Plant genomes contain a large fraction of noncoding sequences. The discovery and annotation of conserved noncoding sequences (CNSs) in plants is an ongoing challenge. Here we report the application of comparative genomics to systematically identify CNSs in 50 well-annotated Gramineae genomes using rice (Oryza sativa) as the reference. We conduct multiple-way whole-genome alignments to the rice genome. The rice genome is annotated as 20 conservation states (CSs) at single-nucleotide resolution using a multivariate hidden Markov model (ConsHMM) based on the multiple-genome alignments. Different states show distinct enrichments for various genomic features, and the conservation scores of CSs are highly correlated with the level of associated chromatin accessibility. We find that at least 33.5% of the rice genome is highly under selection, with more than 70% of the sequence lying outside of coding regions. A catalog of 855,366 regulatory CNSs is generated, and they significantly overlapped with putative active regulatory elements such as promoters, enhancers, and transcription factor binding sites. Collectively, our study provides a resource for elucidating functional noncoding regions of the rice genome and an evolutionary aspect of regulatory sequences in higher plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jgg.2022.04.003 | DOI Listing |
Arch Virol
January 2025
State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
High-throughput sequencing was used to identify and characterize a novel marafivirus from the weed Leptochloa chinensis, which was tentatively named "Leptochloa chinensis marafivirus" (LcMV). The complete genome of the virus consists of 6,178 base pairs, and its nucleotide sequence is 73.82% identical to that of Sorghum almum marafivirus, which is a member of the genus Marafivirus within the family Tymoviridae.
View Article and Find Full Text PDFTrends Biotechnol
January 2025
College of Biological Sciences, China Agricultural University, Beijing 100193, China. Electronic address:
Engineering nitrogen fixation in cereals could reduce usage of chemical nitrogen fertilizers. Here, a nitrogenase biosynthesis pathway comprising 13 genes (nifB nifH nifD nifK nifE nifN nifX hesA nifV nifS nifU groES groEL) was introduced into rice by transforming multigene vectors and subsequently by sexual crossing between transgenic rice plants. Genome sequencing analysis revealed that 13 nif genes in F hybrid rice lines L12-13 and L8-17 were inserted at two loci on rice chromosome 1.
View Article and Find Full Text PDFInsect Biochem Mol Biol
January 2025
Institute of Insect Sciences, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China. Electronic address:
Troponin C (TnC) is a calcium-binding subunit of the troponin complex that regulates muscle contraction in animals. However, the physiological roles of TnC, especially in insect development and reproduction, remain largely unknown. We identified seven TnC genes encoding four EF-hand motif protein in the rice pest, the brown planthopper Nilaparvata lugens.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
January 2025
Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan, China. Electronic address:
Triclocarban (TCC), an emerging organic contaminant, poses a potential threat to water resources and ecosystems. The wolf spider Pardosa pseudoannulata (Araneae: Lycosidae) is a dominant predator typically inhabiting rice fields or wet habitats near water sources. However, little is known about the effects of TCC on the wolf spiders.
View Article and Find Full Text PDFTransl Androl Urol
December 2024
Department of Urology, the First Hospital of Lanzhou University, Lanzhou, China.
Background: Bladder urothelial carcinoma (BLCA) is a highly heterogeneous cancer with a wide range of prognoses, ranging from low-grade non-muscle-invasive bladder cancer (NMIBC), which has a good prognosis but a high recurrence rate, to high-grade muscle-invasive bladder cancer (MIBC), which has a poor prognosis. Glycosylation dysregulation plays a significant role in cancer development. Therefore, this study aimed to investigate the role of glycosyltransferases (GT)-related genes in the prognosis of BLCA and to develop a prognostic model based on these genes to predict overall survival (OS) and assess its clinical application.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!