The immune system, which evolved as a protective system, can paradoxically mediate lethal effects when it is over-activated. These effects can be traced back to infected insects and are mainly mediated by phylogenetically old cytokines that have been found already in starfishes and sponges. We hypothesize that these anti-homeostatic effects are important for restricting the cumulative risk of transmission of highly mutating environmental pathogens that may endanger species, particularly when they start to originate and expand. Considering the Darwinian view that evolution is a permanent process, this anti-homeostatic program is preserved and expressed even when there is no risk for the species. Here, we review these aspects and discuss how evolutionary-imposed anti-homeostatic immune programs are expressed during acute and chronic human diseases, which can be further aggravated in the absence of medical interventions. The relevance of early identification of ancestral biomarkers that predict a shift from protective to deleterious immune outcomes is emphasized.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbi.2022.04.019 | DOI Listing |
J Hazard Mater
January 2025
Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, Sun Yat-sen University, Zhuhai 519080, China. Electronic address:
The polychlorinated aromatic antimicrobial agent triclosan (TCS) is widely used to indiscriminately and rapidly kill microorganisms. The global use of TCS has led to widespread environmental contamination, posing significant threats to ecosystem and human health. Here we reported a newly isolated Pseudomonas sp.
View Article and Find Full Text PDFBiology (Basel)
December 2024
Department of Agriculture, University of Ioannina, Arta Campus, 47100 Arta, Greece.
In this work, the ability of certain entomopathogenic fungi to control the olive fruit fly (Diptera: Tephritidae), which significantly affects olive cultivation, was assessed. First, entomopathogenic fungi that often contribute to reducing pests, as well as , were sought out. Puparia of were collected from oil mills, and soil samples were collected from various olive grove regions of Greece.
View Article and Find Full Text PDFTzu Chi Med J
December 2024
Department of Obstetrics and Gynecology, College of Medicine, University of Babylon, Hilla, Iraq.
The most common STD that triggers cervical cancer is the human papillomavirus. More than 20 types of human papillomavirus (HPV) can induce uterine cervical cancer. Almost all women acquire genital HPV infection soon after their first intercourse, with most of them clearing the virus within 3 years.
View Article and Find Full Text PDFBMC Pharmacol Toxicol
January 2025
Department of Basic Sciences, Faculty of Allied Health Science, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
Background: Dermatophytes, the primary causative agents of superficial cutaneous fungal infections in humans, present a significant therapeutic challenge owing to the increasing prevalence of recurrent infections and the emergence of antifungal resistance. To address this critical gap, this study was designed to investigate the antifungal potential of 3-benzylideneindolin-2-one against dermatophytes and assess its in vivo toxicological profile using brine shrimp and zebrafish embryo models.
Methods: The antifungal activity of 3-benzylideneindolin-2-one was evaluated against 30 clinical isolates of dermatophyte species, including Trichophyton mentagrophytes, Trichophyton rubrum, Microsporum gypseum, Microsporum canis, and Epidermophyton floccosum, by determining the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) using the broth microdilution method.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!