Improving the gas molecule barrier performance and structural stability of bio-plastic films dramatically contribute to packaging and protective fields. Herein, we proposed a novel nanocomposite film consisting of cellulose acetate (CA)/polyethyleneimine (PEI)/reduced graphene oxide (rGO)-NiCoFeO) with high gas barrier property by applying "molecular glue" and "nano-patching" strategies. Systematical investigations demonstrated that the CA/rGO interfacial interaction was effectively enhanced due to the "molecular glue" role of PEI chains via physical/chemical bonds and the defective regions in rGO plane were nano-patched through hydrophilic interactions between edged oxygen-containing functional groups and ultrafine NiCoFeO nanoparticles (~3 nm). As a result, the oxygen and moisture transmission rates of the prepared CA/PEI/rGO-NPs hybrid film were significantly reduced to 0.31 cm ∗ μm/(m ∗ d ∗ kPa) and 314.23 g/m ∗ 24 h, respectively, which were 99.60% and 54.69% lower than pristine CA films. Meanwhile, the tensile strength of hybrid film was increased from 25.90 MPa to 40.67 MPa. More importantly, the designed nanocomposite film possesses excellent structural stability without obvious GO layer shedding and hydrophobicity attenuation after persistent bending at least 100 times. The exceptional robust and high gas barrier film displays great promising application in food, agriculture, pharmaceuticals and electronic instruments packaging industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2022.04.115 | DOI Listing |
Small
January 2025
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510000, China.
Degradable and cost-effective cellulose fiber-based materials are ideal substitutes for traditional plastics. However, organic additives used to enhance water and oil resistance often contain toxic substances that may migrate into food, posing health risks. In this study, inspired by tree structures, lignin-containing cellulose nanofibers (LCNFs) are used to form a "crown-roots" structure to enhance the water, oil, and gas resistance, as well as mechanical performance of composites.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, PR China; Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, PR China. Electronic address:
The chlor-alkali process is critical to the modern chemical industry because of the wide utilization of chlorine gas (Cl). More than 95 % of global Cl production relies on electrocatalytic chlorine evolution reaction (CER) through chlor-alkali electrolysis. The RuO electrocatalyst serves as the main active component widely used in commercial applications.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India.
Chemotherapy resistance (CR) represents one of the most important barriers to effective oncological therapy and often leads to ineffective intervention and unfavorable clinical prognosis. Emerging studies have emphasized the vital significance of extracellular RNA (exRNA) in influencing CR. This thorough assessment intends to explore the multifaceted contributions of exRNA, such as exosomal RNA, microRNAs, long non-coding RNAs, and circular RNAs, to CR in cancer.
View Article and Find Full Text PDFFront Pharmacol
January 2025
College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
Background: Berberine (BBR) is widely used to treat gastrointestinal diseases. However, the pharmacological mechanism of action of BBR in anti-chronic atrophic gastritis (CAG) remains unclear. This study aimed to investigate the mechanism of action of BBR in CAG by integration of molecular biology and multi-omics studies strategy.
View Article and Find Full Text PDFCurr Res Toxicol
December 2024
Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Chang Le Xi Road, Xi'an,Shaanxi 710032, China.
Elevated manganese (Mn) exposure has been implicated in a broad spectrum of neurological disorders, including motor dysfunction and cognitive deficits. Previous studies have demonstrated that Mn induces neurotoxicity by disrupting the integrity of the blood-brain barrier (BBB), a critical regulator in maintaining central nervous system homeostasis and a contributing factor in the pathogenesis of numerous neurological disorders. However, the precise molecular mechanisms underlying Mn-induced BBB disruption and its role in facilitating neurotoxicity remain incompletely understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!