A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Personalized Model to Predict Keratoconus Progression From Demographic, Topographic, and Genetic Data. | LitMetric

Purpose: To generate a prognostic model to predict keratoconus progression to corneal crosslinking (CXL).

Design: Retrospective cohort study.

Methods: We recruited 5025 patients (9341 eyes) with early keratoconus between January 2011 and November 2020. Genetic data from 926 patients were available. We investigated both keratometry or CXL as end points for progression and used the Royston-Parmar method on the proportional hazards scale to generate a prognostic model. We calculated hazard ratios (HRs) for each significant covariate, with explained variation and discrimination, and performed internal-external cross validation by geographic regions.

Results: After exclusions, model fitting comprised 8701 eyes, of which 3232 underwent CXL. For early keratoconus, CXL provided a more robust prognostic model than keratometric progression. The final model explained 33% of the variation in time to event: age HR (95% CI) 0.9 (0.90-0.91), maximum anterior keratometry 1.08 (1.07-1.09), and minimum corneal thickness 0.95 (0.93-0.96) as significant covariates. Single-nucleotide polymorphisms (SNPs) associated with keratoconus (n=28) did not significantly contribute to the model. The predicted time-to-event curves closely followed the observed curves during internal-external validation. Differences in discrimination between geographic regions was low, suggesting the model maintained its predictive ability.

Conclusions: A prognostic model to predict keratoconus progression could aid patient empowerment, triage, and service provision. Age at presentation is the most significant predictor of progression risk. Candidate SNPs associated with keratoconus do not contribute to progression risk.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajo.2022.04.004DOI Listing

Publication Analysis

Top Keywords

prognostic model
16
model predict
12
predict keratoconus
12
keratoconus progression
12
genetic data
8
generate prognostic
8
model
8
early keratoconus
8
snps associated
8
associated keratoconus
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!