Paneth cell maturation is related to epigenetic modification during neonatal-weaning transition.

Histochem Cell Biol

Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi, Kitakyushu, Fukuoka, 807-8555, Japan.

Published: July 2022

Paneth cells are antimicrobial peptide-secreting epithelial cells located at the bottom of the intestinal crypts of Lieberkühn. The crypts begin to form around postnatal day 7 (P7) mice, and Paneth cells usually appear within the first 2 weeks. Paneth cell dysfunction has been reported to correlate with Crohn's disease-like inflammation, showing narrow crypts or loss of crypt architecture in mice. The morphology of dysfunctional Paneth cells is similar to that of Paneth/goblet intermediate cells. However, it remains unclear whether the formation of the crypt is related to the maturation of Paneth cells. In this study, we investigated the histological changes including epigenetic modification in the mouse ileum postnatally and assessed the effect of the methyltransferase inhibitor on epithelium development using an organoid culture. The morphological and functional maturation of Paneth cells occurred in the first 2 weeks and was accompanied by histone H3 lysine 27 (H3K27) trimethylation, although significant differences in DNA methylation or other histone H3 trimethylation were not observed. Inhibition of H3K27 trimethylation in mouse ileal organoids suppressed crypt formation and Paneth cell maturation, until around P10. Overall, our findings show that post-transcriptional modification of histones, particularly H3K27 trimethylation, leads to the structural and functional maturation of Paneth cells during postnatal development.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00418-022-02110-3DOI Listing

Publication Analysis

Top Keywords

paneth cells
24
paneth cell
12
maturation paneth
12
h3k27 trimethylation
12
paneth
9
cell maturation
8
epigenetic modification
8
cells
8
functional maturation
8
maturation
5

Similar Publications

Background: Methylglyoxal (MGO), a highly reactive precursor of advanced glycation end products (AGEs), is endogenously produced and prevalent in various ultra-processed foods. MGO has emerged as a significant precursor implicated in the pathogenesis of type 2 diabetes and neurodegenerative diseases. To date, the effects of dietary MGO on the intestine have been limited explored.

View Article and Find Full Text PDF

Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].

View Article and Find Full Text PDF

Alterations in Ileal Secretory Cells of The DSS-Induced Colitis Model Mice.

Acta Histochem Cytochem

December 2024

Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi, Kitakyushu, Fukuoka 807-8555, Japan.

Inflammatory bowel disease is triggered by abnormalities in epithelial barrier function and immunological responses, although its pathogenesis is poorly understood. The dextran sodium sulphate (DSS)-induced colitis model has been used to examine inflammation in the colon. Damage to mucosa primality occurs in the large intestine and scarcely in the small intestine.

View Article and Find Full Text PDF

: The barrier properties of the human small intestine play a crucial role in regulating digestion, nutrient absorption and drug metabolism. Current in vitro organotypic models consist only of an epithelium, which does not take into account the possible role of stromal cells such as fibroblasts or the extracellular matrix (ECM) which could contribute to epithelial barrier properties. Therefore, the aim of this study was to determine whether these stromal cells or ECM were beneficial or detrimental to barrier function when incorporated into an organotypic human small intestine model.

View Article and Find Full Text PDF

Gut health is crucial in many ways, such as in improving human health in general and enhancing production in agricultural animals. To maximize the effect of a healthy gastrointestinal tract (GIT), an understanding of the regulation of intestinal functions is needed. Proper intestinal functions depend on the activity, composition, and behavior of intestinal epithelial cells (IECs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!