Highly efficient biosynthesis of β-caryophyllene with a new sesquiterpene synthase from tobacco.

Biotechnol Biofuels Bioprod

CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.

Published: April 2022

Background: β-Caryophyllene, a kind of bicyclic sesquiterpene, is mainly used as a spice in the food and cosmetic industries. Furthermore, it also has significant value in the pharmaceutical industry and is now considered to be used as a new fuel. As a chemical energy heterotrophic microorganism, Escherichia coli can produce a large amount of acetyl-CoA through aerobic respiration, and acetyl-CoA is the common precursor substance in the biosynthesis of all terpenoids. Therefore, E. coli has the potential to be a cell factory to produce terpenoids.

Results: A new gene of β-caryophyllene synthase (TPS7) was found by analyzing the genome of Nicotiana tabacum L. using bioinformatics methods. The gene was overexpressed in engineered E. coli with a heterogeneous mevalonate (MVA) pathway to build a recombinant strain CAR1. Subsequent cultivation experiments in shake flask of engineered strain CAR1 verified that 16.1 mg/L β-caryophyllene was detected from the fermentation broth in the shake flask after induction for 24 h with IPTG. The toxic by-product of farnesyl acetate was detected during the process, and CAR1 showed a heavily cellular accumulation of product. We constructed an engineered strain CAR2, in which the downstream genes of the MVA pathway were integrated into the E. coli chromosome, successfully increasing β-caryophyllene production to 100.3 mg/L. The highest production of β-caryophyllene during the fed-batch fermentation was 4319 mg/L. Then we employed in situ extraction fermentation to successfully increase the production of β-caryophyllene by 20% to 5142 mg/L.

Conclusion: A new sesquiterpene synthase, TPS7, from tobacco was found to be able to produce β-caryophyllene with high efficiency. Based on this, an engineered E. coli was constructed to produce a much higher concentration of β-caryophyllene than the previous studies. During the fermentation process, we observed that β-caryophyllene tends to accumulate in intracellular space, which will eventually influence the activity of engineered E. coli. As a result, we solved this by metabolism regulation and in situ extractive fermentation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9040381PMC
http://dx.doi.org/10.1186/s13068-022-02136-8DOI Listing

Publication Analysis

Top Keywords

engineered coli
12
β-caryophyllene
10
sesquiterpene synthase
8
synthase tps7
8
mva pathway
8
strain car1
8
shake flask
8
engineered strain
8
production β-caryophyllene
8
coli
6

Similar Publications

The magnetization strategy of isoquinoline alkaloids has been successfully used in the extraction and isolation, but the effect of the magnetization on biological activities of those alkaloids still deserves further investigation. Therefore, the antibacterial, lipid-lowering and antioxidant activities of five isoquinoline alkaloids (berberine, tetrahydroberberine, palmatine, tetrahydropalmatine and tetrahydropapavine) before and after magnetization were compared in this study, and the results showed that the relevant activities were enhanced after magnetization. Additionally, among the five magnetic derivatives studied, berberine magnetic derivative ([Ber·H][FeCl]) had the best antibacterial effect on S.

View Article and Find Full Text PDF

Growth inhibition by ppc deletion is rescued by isocitrate dehydrogenase mutations in Escherichia coli.

FEMS Microbiol Lett

January 2025

Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.

Phosphoenolpyruvate carboxylase encoded by ppc catalyzes the anaplerotic reaction of oxaloacetate in the TCA cycle in Escherichia coli. Deletion of ppc does not prevent the cells from replenishing oxaloacetate via the glyoxylate shunt, but the ppc-deletion strain almost did not grow on glucose. In the present study, we obtained evolved strains by deleting both ppc and mutS to increase the mutation rate and investigated the mechanisms for improving growth by analyzing the mutated genes.

View Article and Find Full Text PDF

Zinc oxide nanoparticle-embedded tannic acid/chitosan-based sponge: A highly absorbent hemostatic agent with enhanced antimicrobial activity.

Int J Biol Macromol

January 2025

Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1416634793, Iran; Wound Care Solution, Nano Fanavaran Narin Teb Co., Tehran, P.O. Box 19177-53531, Iran; Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), University of Siegen, 57076 Siegen, Germany. Electronic address:

This study reports the development of a highly absorbent Chitosan (CS)/Tannic Acid (TA) sponge, synthesized via chemical cross-linking with Epichlorohydrin (ECH) and integrated with zinc oxide nanoparticles (ZnO NPs) as a novel hemostatic anti-infection agent. The chemical properties of the sponges were characterized using Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and zeta potential measurements. Morphological and elemental analyses conducted through scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDAX) revealed a uniform distribution of ZnO NPs, with particle sizes below 20 nm.

View Article and Find Full Text PDF

Prenol production in a microbial host via the "Repass" Pathways.

Metab Eng

January 2025

Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA. Electronic address:

Prenol and isoprenol are promising advanced biofuels and serve as biosynthetic precursors for pharmaceuticals, fragrances, and other industrially relevant compounds. Despite engineering improvements that circumvent intermediate cytotoxicity and lower energy barriers, achieving high titer 'mevalonate (MVA)-derived' prenol has remained elusive. Difficulty in selective prenol production stems from the necessary isomerization of isopentenyl diphosphate (IPP) to dimethylallyl diphosphate (DMAPP) as well as the intrinsic toxicity of these diphosphate precursors.

View Article and Find Full Text PDF

Selective pressure of various levels of erythromycin on the development of antibiotic resistance.

Environ Pollut

January 2025

Civil and Construction Engineering and Environmental and Ecological Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, Indiana, United States 47907. Electronic address:

This study evaluated microbial fitness under selective pressure of various erythromycin concentrations and the development of resistance genes in Escherichia coli (E. coli) and Enterococcus faecalis (E. faecalis).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!