Background: The defect of intervertebral disc (IVD) after discectomy may impair tissue healing and predispose patients to subsequent IVD degeneration, which is thought to be an important cause of recurrence. Cell-based approaches for the treatment of IVD degeneration have shown promise in preclinical studies. However, most of these therapies have not been approved for clinical use due to the risks of abnormal differentiation and microorganism contamination of the culture-expanded cells. Selective cell retention (SCR) technology is non-cultivation technique, which can avoid those preambles in cell expansion. In this study, we used a commercially available BONE GROWTH PROMOTER device (BGP, FUWOSI, Chongqing, China) to concentrate mesenchymal stromal cells (MSCs) from bone marrow aspirate (BMA) through SCR technology.

Methods: A small incision was made on the L2/3, L3/4 and L4/5 discs of goats and part of nucleus pulposus (NP) was removed to construct IVD defect model. The L2/3 disc was subjected to discectomy only (DO group), the L3/4 disc was implanted with enriched BMA-matrix (CE group), and the L4/5 disc was implanted cultured autologous bone marrow MSCs matrix (CC group). And the intact L1/2 disc served as a non-injured control (NC group). The animals were followed up for 24 weeks after operation. Spine imaging was analysis performed at 4 and 24 weeks. Histology, immunohistochemistry, gene expression and biomechanical analysis were performed to investigate the IVD morphology, content and mechanical properties at 24 weeks.

Results: The CE and CC groups showed a significantly smaller reduction in the disc height and T2-weighted signal intensity, and a better spinal segmental stability than DO group. Histological analysis demonstrated that CE and CC groups maintained a relatively well-preserved structure compared to the DO group. Furthermore, real-time PCR and immunohistochemistry demonstrated that aggrecan and type II collagen were up-regulated in CE and CC groups compared to DO group.

Conclusions: The strategy of MSCs enrichment combined with gelatin sponge by SCR technology provides a rapid, simple, and effective method for cell concentration and cell-carrier combination. This reparative strategy can be used in clinical treatment of IVD defect after discectomy.

Clinical Trial Registration: NCT03002207.

Download full-text PDF

Source
http://dx.doi.org/10.31083/j.fbl2704131DOI Listing

Publication Analysis

Top Keywords

mesenchymal stromal
8
stromal cells
8
combined gelatin
8
gelatin sponge
8
intervertebral disc
8
ivd degeneration
8
treatment ivd
8
scr technology
8
bone marrow
8
ivd defect
8

Similar Publications

Acid-Triggered Dual-Functional Hydrogel Platform for Enhanced Bone Regeneration.

Adv Sci (Weinh)

January 2025

Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.

Stem cell implantation holds promise for enhancing bone repair, but risks of pathogen transmission and malignant cell transformation should not be ignored. Compared to stem cell implantation, recruitment of endogenous stem cells to injured sites is more critical for in situ bone regeneration. In this study, based on the acidic microenvironment of bone injury, an HG-AA-SDF-1α composite hydrogel with a dual-control intelligent switch function is developed by incorporating stromal cell-derived factor (SDF-1α), arginine carbon dots (Arg-CDs), and calcium ions (Ca) into the oxidized hyaluronic acid/gelatin methacryloyl (HG) hydrogel.

View Article and Find Full Text PDF

[Gene coexpression networks: concepts and applications].

Biol Aujourdhui

January 2025

Sorbonne Université, CNRS, Inserm U1156, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement/UMR7622, 9 Quai St-Bernard, 75005 Paris, France.

The advent of high-throughput omics data and the generation of new algorithms provide the biologists with the opportunity to explore living processes in the context of systems biology aiming at revealing the gene interactions, the networks underlying complex cellular functions. In this article, we discuss two methods for gene network reconstruction, WGCNA (Weighted Gene Correlation Network Analysis) developed by Steve Horvath and collaborators in 2008, and MIIC (Multivariate Information-based Inductive Causation) developed by Hervé Isambert and his team in 2017 and 2024. These two methods are complementary, WGCNA generating undirected networks in which most gene-to-gene interactions are indirect, while MIIC reveals direct interactions and some causal links.

View Article and Find Full Text PDF

Introduction: Intestinal lymphoma may be latent in some dogs with chronic inflammatory enteropathy. Mesenchymal stromal cells (MSCs) have potential therapeutic applications for refractory chronic inflammatory enteropathy, but their impact on the development of potential intestinal lymphomas has not yet been evaluated. Therefore, this study was performed to investigate the effect of canine adipose-derived MSCs (cADSCs) on the growth of canine lymphoma cell lines to assess the safety of MSC-based therapy in terms of pro- and anti-tumorigenic effects.

View Article and Find Full Text PDF

Pulmonary fibrosis significantly contributes to the pathogenesis of acute respiratory distress syndrome (ARDS), markedly increasing patient mortality. Despite the established anti-fibrotic effects of mesenchymal stem cells (MSCs), numerous challenges hinder their clinical application. A recent study demonstrated that microvesicles (MVs) from MSCs (MSC-MVs) could attenuate ARDS-related pulmonary fibrosis and enhance lung function hepatocyte growth factor mRNA transcription.

View Article and Find Full Text PDF

Background: Human mesenchymal stromal cells (MSCs) possess regenerative potential due to pluripotency and paracrine functions. However, their stemness and immunomodulatory capabilities are sub-optimal in conventional two-dimensional (2D) culture.

Aim: To enhance the efficiency and therapeutic efficacy of MSCs, an -like 3D culture condition was applied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!