Synthesis and biological evaluation of geniposide derivatives as inhibitors of hyperuricemia, inflammatory and fibrosis.

Eur J Med Chem

Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, PR China. Electronic address:

Published: July 2022

Hyperuricemia is a metabolic disease caused by abnormal purine metabolism in the body. Long-term high levels of uric acid in the body will lead to gout and kidney disease. Xanthine oxidase (XOD) is a key enzyme in the pathogenesis of hyperuricemia. In this context, a series of geniposide derivatives were designed, synthesized and evaluated as xanthine oxidase inhibitors. Most of these compounds exhibited potent XOD inhibitory activities in vitro, and representatives 6a, 6c, 6g and 6j were found to be the most potent inhibitors against the enzyme with IC values of 2.15 ± 1.03, 1.37± 0.26, 4.14± 0.79 and 1.86± 0.13 μM, which were 33.03-158.37 fold more active than geniposide, respectively. Compounds 6a, 6c, 6g and 6j were evaluated in hyperuricemia mice, and the results demonstrated that compound 6c showed the strongest anti-hyperuricemia and renal protective activity in vivo. Subsequently, the molecular mechanism of compound 6c was studied in this investigation. In vitro cell experiments showed that compound 6c inhibited the inflammation of HK-2 cells under high uric acid conditions by inhibiting the expressions of TGF-β, TNF-α and IL-1β, and reduced the cell fibrosis by decreasing the expressions of α-SMA and Collagen I. The results of the mice experiments indicated that compound 6c efficiently decreased the level of serum uric acid (SUA) in hyperuricemia mice by inhibiting the XOD activity. Moreover, compound 6c effectively reduced the urate accumulation in the kidney and simultaneously decreased inflammation by regulating the expression of the TLR4/IκBα/NF-κB signaling pathway. In addition, consistent with cell experiments, compound 6c also reduced renal fibrosis in hyperuricemia mice, which may be due to compound 6c inhibiting the expression of inflammatory factor TGF-β. Furthermore, a molecular docking study was performed to gain insight into the binding mode of compound 6c with XOD. These results suggest that compound 6c has the potential to be developed into a novel medicine to reduce blood uric acid and treat renal diseases caused by hyperuricemia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2022.114379DOI Listing

Publication Analysis

Top Keywords

uric acid
16
hyperuricemia mice
12
compound
9
geniposide derivatives
8
fibrosis hyperuricemia
8
xanthine oxidase
8
cell experiments
8
experiments compound
8
hyperuricemia
7
synthesis biological
4

Similar Publications

Background: Serum uric acid (SUA) was a predictor of cognitive function. The association of SUA/serum creatinine ratio (Scr), which represents renal function-normalized SUA and cognitive function is unknown.

Objective: This study investigated the association of the SUA/Scr with cognitive function and the potential mediation effect of inflammation in the above relationship.

View Article and Find Full Text PDF

Background: Gallstone disease (GSD) is a prevalent gastrointestinal disorder, few studies have examined the combined effects of dietary and lifestyle factors on GSD. This study aims to investigate the relationship between oxidative balance score (OBS) and GSD, and explores the potential mediating role of oxidative stress.

Methods: Cross-sectional data from 6,196 participants in the NHANES 2017-2020 were analyzed.

View Article and Find Full Text PDF

Wood membrane: A sustainable electrochemical platform for enzyme-free and pretreatment-free monitoring uric acid in bodily fluids.

Anal Chim Acta

January 2025

School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China. Electronic address:

The detection of biomarkers is crucial for assessing disease status and progression. Uric acid (UA), a common biomarker in body fluids, plays an important role in the diagnosis and monitoring of conditions such as hyperuricemia, chronic kidney disease, and cardiovascular disease. However, the low concentration of UA in non-invasive body fluids, combined with numerous interfering substances, makes its detection challenging.

View Article and Find Full Text PDF

Objectives: The high incidence of coronary artery heart disease (CHD) poses a significant burden and challenge to public health systems globally. Effective prevention and early diagnosis of CHD have become key strategies to alleviate this burden. This study aims to explore the application of advanced machine learning techniques to enhance the accuracy of early screening and risk assessment for CHD.

View Article and Find Full Text PDF

Associations between serum metabolic syndrome indicators levels and cerebrospinal fluid pathological protein.

Alzheimers Dement

December 2024

Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China;, Beijing, China

Background: Metabolic syndrome (MetS) was associated with an increased incidence of mild cognitive impairment (MCI) and progression to dementia. However, little is known about why this occurs. This study was to examine the correlation between the MetS indicators and cerebrospinal fluid (CSF) pathological protein biomarkers to investigate this mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!