Biological methylation: redefining the link between genotype and phenotype.

Anim Biotechnol

Animal Genetics and Breeding Division, Veterinary College, Hassan, KVAFSU, Karnataka, India.

Published: December 2023

The central dogma of molecular biology is responsible for the crucial flow of genetic information from DNA to protein through the transcription and translation process. Although the sequence of DNA is constant in all organs, the difference in protein and variation in the phenotype is mainly due to the quality and quantity of tissue-specific gene expression and methylation pattern. The term methylation has been defined and redefined by various scientists in the last fifty years. There is always huge excitement around this field because the inheritance of something is beyond its DNA sequence. Advanced gene methylation studies have redefined molecular genetics and these tools are considered in alleviating challenges of animal disease and production. Recent emerging evidence has shown that the impact of DNA, RNA, and protein methylation is crucial for embryonic development, cell proliferation, cell differentiation, and phenotype production. Currently, many researchers are focusing their work on methylation to understand its significant role in expression, disease-resistant traits, productivity, and longevity. The main aim of the present review is to provide an overview of DNA, RNA, and protein methylation, current research output from different sources, methodologies, factors responsible for methylation of genes, and future prospects in animal genetics.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10495398.2022.2065999DOI Listing

Publication Analysis

Top Keywords

dna rna
8
rna protein
8
protein methylation
8
methylation
7
dna
5
biological methylation
4
methylation redefining
4
redefining link
4
link genotype
4
genotype phenotype
4

Similar Publications

Oogenesis involves a novel nuclear envelop remodeling mechanism in Schmidtea mediterranea.

Dev Biol

December 2024

Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA. Electronic address:

The cell nuclei of Ophisthokonts, the eukaryotic supergroup defined by fungi and metazoans, is remarkable in the constancy of their double-membraned structure in both somatic and germ cells. Such remarkable structural conservation underscores common and ancient evolutionary origins. Yet, the dynamics of disassembly and reassembly displayed by Ophisthokont nuclei vary extensively.

View Article and Find Full Text PDF

NSUN2-Mediated R-loop Stabilization as a Key Driver of Bladder Cancer Progression and Cisplatin Sensitivity.

Cancer Lett

December 2024

Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China. Electronic address:

R-loops are critical structures that play pivotal roles in regulating genomic stability and modulating gene expression. This study investigates the interactions between the 5-methylcytosine (mC) methyltransferase NOP2/Sun RNA methyltransferase 2 (NSUN2) and R-loops in the transcriptional dynamics and damage repair process of bladder cancer (BCa) cells. We observed markedly elevated levels of R-loops in BCa cells relative to normal urothelial cells.

View Article and Find Full Text PDF

Antisense oligonucleotides-based approaches for the treatment of multiple myeloma.

Int J Biol Macromol

December 2024

Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; Advanced Polymer Materials Group, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; ebio-Hub Research Centre, University Politehnica of Bucharest-Campus, Iuliu Maniu 6, 061344 Bucharest, Romania. Electronic address:

Multiple myeloma (MM), a hematological malignancy which affects the monoclonal plasma cells in the bone marrow, is in rising incidence around the world, accounting for approximately 2 % of newly diagnosed cancer cases in the US, Australia, and Western Europe. Despite the progress made in the last few years in the available therapeutic options (e.g.

View Article and Find Full Text PDF

Anti-miR21-conjugated DNA nanohydrogel for enhanced cancer therapy.

Biomater Adv

December 2024

Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea. Electronic address:

MicroRNAs (miRNAs) are non-coding, endogenous small single-stranded RNA molecules involved in post-transcriptional regulation of gene expression. It has been demonstrated that dysregulation of miRNA plays a major role in tumor formation, proliferation, and metastasis. Therefore, the delivery of anti-miRNA oligonucleotides to block the activity of these oncogenic miRNAs is a high-potential anti-cancer therapy approach.

View Article and Find Full Text PDF

Background: The dysregulation of ribosome biogenesis has been extensively identified in various cancers, making it emerge as a hallmark of malignant cells. This highlights the potential of targeting ribosome biogenesis as an effective approach for treating cancer patients. Although chemotherapy drugs including doxorubicin and cisplatin often target ribosome biogenesis to induce DNA damage or inhibit tumor cell proliferation, they are associated with significant side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!