Direct Photoexcitation of Xanthate Anions for Deoxygenative Alkenylation of Alcohols.

Org Lett

Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Published: May 2022

In this report, we identify xanthate salts as a unique class of visible-light-excitable alkyl radical precursors that act simultaneously as strong photoreductants and alkyl radical sources. Upon direct photoexcitation of xanthate anions, efficient deoxygenative alkenylation and alkylation of a wide range of primary, secondary, and tertiary alcohols have been achieved via a one-pot protocol, avoiding any photocatalysts. This method exhibits a broad substrate scope and good functional group tolerance, enabling late-stage functionalization of complex molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.2c00889DOI Listing

Publication Analysis

Top Keywords

direct photoexcitation
8
photoexcitation xanthate
8
xanthate anions
8
deoxygenative alkenylation
8
alkyl radical
8
anions deoxygenative
4
alkenylation alcohols
4
alcohols report
4
report identify
4
identify xanthate
4

Similar Publications

Irradiation of condensed matter with ionizing radiation generally causes direct photoionization as well as secondary processes that often dominate the ionization dynamics. Here, large helium (He) nanodroplets with radius ≳ 40 nm doped with lithium (Li) atoms are irradiated with extreme ultraviolet (XUV) photons of energy hν ≥ 44.4 eV and indirect ionization of the Li dopants is observed in addition to direct photoionization of the He droplets.

View Article and Find Full Text PDF

Photoinduced Fröhlich Interaction-Driven Distinct Electron- and Hole-Polaron Behaviors in Hybrid Organic-Inorganic Perovskites by Ultrafast Terahertz Probes.

ACS Nano

January 2025

School of Information Science and Technology and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433, China.

The formation of large polarons resulting from the Fröhlich coupling of photogenerated carriers with the polarized crystal lattice is considered crucial in shaping the outstanding optoelectronic properties in hybrid organic-inorganic perovskite crystals. Until now, the initial polaron dynamics after photoexcitation have remained elusive in the hybrid perovskite system. Here, based on the terahertz time-domain spectroscopy and optical-pump terahertz probe, we access the nature of interplay between photoexcited unbound charge carriers and optical phonons in MAPbBr within the initial 5 ps after excitation and have demonstrated the simultaneous existence of both electron- and hole-polarons, together with the photogenerated carrier dynamic process.

View Article and Find Full Text PDF

Photoelectrochemical sensors have been studied for glucose detection because of their ability to minimize background noise and unwanted reactions. Titanium dioxide (TiO), a highly efficient material in converting light into electricity, cannot utilize visible light. In this regard, we developed a nonenzymatic glucose sensor by using a simple one-step electrospinning technique to combine cupric oxide with TiO to create a heterojunction.

View Article and Find Full Text PDF

Unveiling the nexus between irradiation and phase reconstruction in tin-lead perovskite solar cells.

Nat Commun

January 2025

School of Physics and Technology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, China.

Tin-lead perovskites provide an ideal bandgap for narrow-bandgap perovskites in all-perovskite tandem solar cells, fundamentally improving power conversion efficiency. However, light-induced degradation in ambient air is a major issue that can hinder the long-term operational stability of these devices. Understanding the specifics of what occurs during this pathway provides the direction for improving device stability.

View Article and Find Full Text PDF

MoS-confined Rh-Zn atomic pair boosts photo-driven methane carbonylation to acetic acid.

Nat Commun

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.

Direct carbonylation of CH to CHCOOH provides a promising pathway for upgrading of natural gas to transportable liquid chemicals, in which high-efficiency CH activation and controllable C-C coupling are both critical but challenging. Herein, we report that highly efficient photo-driven carbonylation of CH with CO and O to CHCOOH is achieved over MoS-confined Rh-Zn atomic-pair in conjunction with TiO. It delivers a high CHCOOH productivity of 152.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!