Spray formation using the droplet impact on superhydrophobic mesh surfaces is particularly important because of its application in different industries. The present study revealed that adding a trivial amount of the poly(ethylene oxide) (PEO) polymer to a water droplet can considerably change the impact phenomena on the superhydrophobic mesh surfaces and suppress the spray formation. Droplet rebound is observed only in a narrow range of impact velocities of PEO aqueous droplets when the tiny filaments still connect the surface and droplet. Rebound suppression and deposition of the PEO aqueous droplet is attributed to the higher interaction between the polymer chains and the superhydrophobic mesh surface. After a critical impact velocity and number which is independent of the PEO concentration, the liquid penetrates the mesh pores. The penetrated liquid formed the ligaments that grow until they reach the maximum length and surprisingly retract back to the mesh surface and the mother droplet. The ligaments destabilized at low PEO concentrations ( = 0.5 and 1 g/L) and a mesh opening size of = 357 μm to the crest swell droplets when the droplet size is reduced by increasing the impact velocity. The ligament fragmentation and droplet detachment are observed only at high impact velocities when = 0.5 and 1 g/L and = 357 μm. The result shows that the PEO additive does not significantly affect the maximum spreading diameter. An empirical model to calculate the maximum spreading factor is developed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.2c00385DOI Listing

Publication Analysis

Top Keywords

superhydrophobic mesh
16
droplet
9
spray formation
8
formation droplet
8
mesh surfaces
8
droplet rebound
8
impact velocities
8
peo aqueous
8
mesh surface
8
impact velocity
8

Similar Publications

The 'gas‒liquid‒solid' mechanism annealing method was used to create a superhydrophobic boron nitride nanotube (BNNT) stainless steel mesh in a tube furnace at 1250 °C in an NH environment. Fe powder was used as a catalyst, and B:BO = 4:1 was used as the raw material. The water droplets on the surface of the superhydrophobic material had a contact angle of approximately 150° and a slide angle of approximately 3°.

View Article and Find Full Text PDF

Water scarcity is a critical global challenge, especially in arid and semiarid regions. Fog harvesting has emerged as a promising solution; however, concerns about air pollution and bacterial growth in humid environments have raised doubts about the safety and sustainability of such systems. This study introduces a Janus mesh with asymmetric wettability on its two faces, fabricated through a simple and scalable method.

View Article and Find Full Text PDF

Superhydrophobic Porous Cylindrical Barrel Founded on Stainless-Steel Mesh for Interfacial Water Evaporation.

Langmuir

November 2024

SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China.

Superhydrophobic materials have been widely applied in oil-water separation, self-cleaning, antifouling, and drag reduction; however, their role in liquid evaporation and drying remains unexplored. Inspired by the microstructure of the nonwetting legs of water striders, we designed a low-adhesion superhydrophobic cylindrical barrel (CB) derived from stainless-steel mesh (SSM) to enhance liquid thermal evaporation and drying. The CB was created by hydrothermally depositing zinc oxide (ZnO) with multilevel morphologies onto metal wires, followed by modification with low-surface-energy stearic acid (SA).

View Article and Find Full Text PDF

In this study, boron nitride nanotubes (BNNTs) were utilized as covering and reinforcing materials owing to their extraordinary insulation and extremely high hydrophobicity. The gas-liquid-solid annealing process was used to manufacture the BNNT stainless-steel filter, with a 120 mesh stainless steel filter serving as the substrate and BO as the raw material. Scanning electron microscopy showed that the average diameter of the nanotubes was 0.

View Article and Find Full Text PDF

Droplet Impact on Superhydrophobic Mesh Surfaces.

Langmuir

August 2024

State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China.

Reducing the contact time of droplet impacts on surfaces is crucial for various applications including corrosion prevention and anti-icing. This study aims to explore a novel strategy that greatly reduces contact time using a superhydrophobic mesh surface with multiple sets of mutually perpendicular ridges while minimizing the influence of the impacting location. The effects of the impact Weber numbers and ridge spacing on the characteristics of the impact dynamics and contact time are studied experimentally.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!