The life-threatening adverse effects of doxorubicin (Dox) caused by its cardiotoxic properties limit its clinical application. DDX3X has been shown to participate in a variety of physiological processes, and it acts as a regulator of Wnt/β-catenin signaling. However, the role of DDX3X in Dox-induced cardiotoxicity (DIC) remains unclear. In this study, we found that DDX3X expression was significantly decreased in H9c2 cardiomyocytes treated with Dox. Ddx3x knockdown and RK-33 (DDX3X ATPase activity inhibitor) pretreatment exacerbated cardiomyocyte apoptosis and mitochondrial dysfunction induced by Dox treatment. In contrast, Ddx3x overexpression ameliorated the DIC response. Moreover, Wnt/β-catenin signaling in cardiomyocytes treated with Dox was suppressed, but this suppression was reversed by Ddx3x overexpression. Overall, this study demonstrated that DDX3X plays a protective role in DIC by activating Wnt/β-catenin signaling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9539463 | PMC |
http://dx.doi.org/10.1002/jbt.23077 | DOI Listing |
Radiat Environ Biophys
January 2025
Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India.
Radiation therapy (RT) is fundamental to the fight against cancer because of its exceptional ability to target and destroy cancer cells. However, conventional radiation therapy can significantly affect the adjacent normal tissues, leading to fibrosis, inflammation, and decreased organ function. This tissue damage not only reduces the quality of life but also prevents the total elimination of cancer.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China.
Purpose: R-spondin3 (RSPO3), a mammalian-specific amplifier of WNT signaling pathway, maintains the homeostasis of various adult stem cells. However, its expression at the limbus and the effect on limbal epithelial stem cells (LESCs) remains unclear. We investigated the impact of RSPO3 on the proliferation and self-renewal of LESCs and explored its molecular mechanisms.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Molecular Medicine, Scripps Research Institute, La Jolla, California, USA.
Tumors require ample protein synthesis to grow, and aminoacyl-tRNA synthetases, as critical translation factors, are expected to support cancer progression. Unexpectedly, overexpression of seryl-tRNA synthetase (SerRS) suppresses primary tumor growth of breast cancer. However, the effects of SerRS on metastasis have not been studied.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA.
Triple-negative breast cancer (TNBC) is infamous for its aggressive phenotype and poorer prognosis when compared to other breast cancer subtypes. One factor contributing to this poor prognosis is that TNBC lacks expression of the receptors that available hormonal or molecular-oriented therapies attack. New treatments that exploit biological targets specific to TNBC are desperately needed to improve patient outcomes.
View Article and Find Full Text PDFMol Carcinog
January 2025
Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong, China.
Pancreatic cancer is a highly lethal malignancy with few effective treatment options. Connexin 31 (Cx31) is a membrane protein capable of forming hexameric channels to facilitate the exchange of metabolites and signaling molecules. Yet, the contribution of Cx31 to the onset and progression of pancreatic cancer remains to be understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!