The heterogeneity of cancer has become a major obstacle to treatment, and the development of an efficient, fast, and accurate drug delivery system is even more urgent. In this work, we designed a device that integrated multiple functions of cell capture, manipulation, and non-destructive release on a single device. With an applied electric field, an intelligent device based on MnO nanomaterials was used to realize efficient and rapid capture of cancer cells in both patients' blood and artificial blood samples. This device could capture cancer cells with high efficiency (up to about 93%) and strong specificity in blood samples, the capture time was nearly 50 min faster than that of natural sedimentation, and reduce the effects on cells caused by long-time culture. In addition, Mn on the surface of the MnO substrate was reduced to Mn by an electrochemical method, partial dissolution occurred, and then the captured cells were non-destructively released with rapid speed (about 8 s) and high efficiency (about 94 ± 2%). For regulation, upon applying a pulse electric field, the captured cells were perforated nondestructively, and extracellular molecules could be delivered to the captured cells with well-performed dose and temporal controls. As a proof-of-concept application, we proved that the device could capture circulating tumor cells in peripheral blood faster and achieve drug delivery. Finally, it can also quickly release circulating tumour cells for subsequent analysis, highlighting its accuracy, due to which it is widely used in medical treatment, basic tumor research and drug development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2nr01371a | DOI Listing |
Gene expression is coordinated by a multitude of transcription factors (TFs), whose binding to the genome is directed through multiple interconnected epigenetic signals, including chromatin accessibility and histone modifications. These complex networks have been shown to be disrupted during aging, disease, and cancer. However, profiling these networks across diverse cell types and states has been limited due to the technical constraints of existing methods for mapping DNA:Protein interactions in single cells.
View Article and Find Full Text PDFBrief Bioinform
November 2024
State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Xuanwu District, Nanjing 210096, China.
Spatial transcriptomics technologies have been extensively applied in biological research, enabling the study of transcriptome while preserving the spatial context of tissues. Paired with spatial transcriptomics data, platforms often provide histology and (or) chromatin images, which capture cellular morphology and chromatin organization. Additionally, single-cell RNA sequencing (scRNA-seq) data from matching tissues often accompany spatial data, offering a transcriptome-wide gene expression profile of individual cells.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Department of Electronic Engineering, Tsinghua University, 100084 Beijing, China.
Single-cell multi-omics techniques, which enable the simultaneous measurement of multiple modalities such as RNA gene expression and Assay for Transposase-Accessible Chromatin (ATAC) within individual cells, have become a powerful tool for deciphering the intricate complexity of cellular systems. Most current methods rely on motif databases to establish cross-modality relationships between genes from RNA-seq data and peaks from ATAC-seq data. However, these approaches are constrained by incomplete database coverage, particularly for novel or poorly characterized relationships.
View Article and Find Full Text PDFJ Proteomics
January 2025
Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil; Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
Periodontal disease affects over 1 billion people globally. This study investigated how periodontitis affects the protein profile of the periodontal ligament (PDL) in rats. Eight Holtzman rats were divided into the control and experimental periodontitis groups.
View Article and Find Full Text PDFWater Res
January 2025
School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China. Electronic address:
The influence of algal organic matter (AOM) on the settling performance of algal flocs remains poorly understood. To address this, we employed fractionation techniques based on molecular weight to isolate different AOM fractions and analyzed their effects on floc structure and settling performance. This involved comparing the concentrations, compositions, potentials, and functional groups of organic matter before and after coagulation-sedimentation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!