SARS-CoV-2 variants of concern (VOC) acquired mutations in the spike (S) protein, including E484K, that confer resistance to neutralizing antibodies. However, it is incompletely understood how these mutations impact viral entry into host cells. Here, we analyzed how mutations at position 484 that have been detected in COVID-19 patients impact cell entry and antibody-mediated neutralization. We report that mutation E484D markedly increased SARS-CoV-2 S-driven entry into the hepatoma cell line Huh-7 and the lung cell NCI-H1299 without augmenting ACE2 binding. Notably, mutation E484D largely rescued Huh-7 but not Vero cell entry from blockade by the neutralizing antibody Imdevimab and rendered Huh-7 cell entry ACE2-independent. These results suggest that the naturally occurring mutation E484D allows SARS-CoV-2 to employ an ACE2-independent mechanism for entry that is largely insensitive against Imdevimab, an antibody employed for COVID-19 therapy. The interaction of the SARS-CoV-2 spike protein (S) with the cellular receptor ACE2 is considered essential for infection and constitutes the key target for antibodies induced upon infection and vaccination. Here, using a surrogate system for viral entry, we provide evidence that a naturally occurring mutation can liberate SARS-CoV-2 from ACE2-dependence and that ACE2-independent entry may protect the virus from neutralization by an antibody used for COVID-19 therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9239067PMC
http://dx.doi.org/10.1128/mbio.00364-22DOI Listing

Publication Analysis

Top Keywords

covid-19 therapy
12
cell entry
12
mutation e484d
12
entry
9
ace2-independent entry
8
neutralization antibody
8
antibody covid-19
8
spike protein
8
viral entry
8
naturally occurring
8

Similar Publications

Background: This study investigated the impact of posaconazole (POSA) prophylaxis in COVID-19 patients with acute respiratory failure receiving systemic corticosteroids on the risk for the development of COVID-19-associated pulmonary aspergillosis (CAPA).

Methods: The primary aim of this prospective, multicentre, case-control study was to assess whether application of POSA prophylaxis in mechanically ventilated COVID-19 patients reduces the risk for CAPA development. All consecutive patients from centre 1 (cases) who received POSA prophylaxis as standard-of-care were matched to one subject from centre 2 and centre 3 who did not receive any antifungal prophylaxis, using propensity score matching for the following variables: (i) age, (ii) sex, (iii) treatment with tocilizumab and (iv) time at risk.

View Article and Find Full Text PDF

Background: Nonpharmaceutical interventions for coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2, during the pandemic altered the epidemiology of respiratory viruses. This study aimed to determine the changes in respiratory viruses among children hospitalized from 2018 to 2023.

Methods: Nasopharyngeal specimens were collected from children aged under 15 years with fever and/or respiratory symptoms admitted to a medical institution in Fukushima Prefecture between January 2018 and December 2023.

View Article and Find Full Text PDF

Background: The global pandemic caused by SARS-CoV-2 has resulted in millions of people experiencing long COVID condition, a range of persistent symptoms following the acute phase, with an estimated prevalence of 27%-64%.

Materials And Methods: To understand its pathophysiology, we conducted a longitudinal study on viral load and cytokine dynamics in individuals with confirmed SARS-CoV-2 infection. We used reverse transcriptase droplet digital PCR to quantify viral RNA from nasopharyngeal swabs and employed multiplex technology to measure plasma cytokine levels in a cohort of people with SARS-CoV-2 infection.

View Article and Find Full Text PDF

A broadly neutralizing antibody against the SARS-CoV-2 Omicron sub-variants BA.1, BA.2, BA.2.12.1, BA.4, and BA.5.

Signal Transduct Target Ther

January 2025

NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.

The global spread of Severe Acute Respiratory Syndrome Coronavirus 2. (SARS-CoV-2) and its variant strains, including Alpha, Beta, Gamma, Delta, and now Omicron, pose a significant challenge. With the constant evolution of the virus, Omicron and its subtypes BA.

View Article and Find Full Text PDF

Background: Globally, healthcare institutions have seen a marked rise in workplace violence (WPV), especially since the Covid-19 pandemic began, affecting primarily acute care and emergency departments (EDs). At the University Health Network (UHN) in Toronto, Canada, WPV incidents in EDs jumped 169% from 0.43 to 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!