A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Consistency of Mycobacterium tuberculosis Complex Spoligotyping between the Membrane-Based Method and Approach. | LitMetric

To tackle the spread of tuberculosis (TB), epidemiological studies are undertaken worldwide to investigate TB transmission chains. Clustered regulatory interspaced short palindromic repeats (CRISPR) locus diversity, also called spoligotyping, is a widely used genotyping assay for the characterization of Mycobacterium tuberculosis complex (MTBC). We compared herein the spoligotyping of MTBC clinical isolates using a membrane-based method (following an initial PCR step) and whole-genome sequencing (WGS)-based method (i.e., spoligotyping). All MTBC strains isolated at the Lyon University Hospital, France, between November 2016 and December 2020 were included ( = 597). Spoligotyping profiles were also used for species identification among the MTBC. Outputs of both methods were analyzed, and discrepant results were investigated thanks to CRISPRbuilder-TB. The overall agreement was 85.7%. Spacer discrepancies observed between the methods were due to the insertion of IS6110 within the direct repeat (DR) sequence upstream or downstream of spacers, mutated DR sequences, or truncated spacers. Discrepancies did not impact species identification. Although spoligotyping-based species identification was inconclusive for 29 isolates, SNP-based phylogeny conducted after WGS allowed the identification of 23 M. tuberculosis (Mtb), 2 M. canettii, and 4 mixed MTBC infections. WGS yielded very few discrepancies compared to membrane-based spoligotyping. Overall agreement was significantly improved (92.4%) by the CRISPR locus reconstruction using CRISPRbuilder-TB for the MTBC isolates with the shared international type 53 spoligotyping. A smooth transition from the membrane-based to the -based genotyping of M. tuberculosis isolates is, therefore, possible for TB diagnosis and epidemiologic survey. Whole-genome sequencing (WGS) has profoundly transformed the perspectives of tuberculosis (TB) diagnosis, providing a better discriminatory power to determine relatedness between Mycobacterium tuberculosis complex (MTBC) isolates. Previous genotyping approaches, such as spoligotyping consisting of an initial PCR step followed by reverse dot hybridization, are currently being replaced by WGS. Several pipelines have been developed to extract a spoligotype from WGS data ( spoligotyping) allowing for the continuity of MTBC molecular surveys before and after WGS implementation. The present study found very good overall agreement between hybridization to membrane-based spoligotyping and spoligotyping, indicating the possibility of a smooth transition from the traditional to the -based genotyping of MTBC isolates for TB diagnosis and epidemiological survey.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9241810PMC
http://dx.doi.org/10.1128/spectrum.00223-22DOI Listing

Publication Analysis

Top Keywords

mycobacterium tuberculosis
12
tuberculosis complex
12
species identification
12
mtbc isolates
12
spoligotyping
11
mtbc
9
membrane-based method
8
crispr locus
8
complex mtbc
8
spoligotyping mtbc
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!