A high-quality FeGeTe single crystal with good electrical, magnetic, and electromagnetic wave absorption and shielding properties was prepared in a large quantity (10 g level) by solid-phase sintering and recrystallization method, which would promote its in-depth research and practical application. It has good room-temperature electrical properties with a mobility of 42 cm/V·s, a sheet (bulk) carrier concentration of +1.64 × 10 /cm (+3.28 × 10 /cm), and a conductivity of 2196.35 S/cm. Also, a Curie temperature of 238 K indicates the high magnetic transition temperature and a paramagnetic Curie temperature of 301 K shows the large ferromagnetic-paramagnetic transition zone induced by the residual short-range ferromagnetic domains. Particularly, FeGeTe is in a loosely packed state when used as a loss agent; the electromagnetic wave absorption with a reflection loss of -34.7 dB at 3.66 GHz under thin thickness was shown. Meanwhile, the absorption band can be effectively regulated by varying the thickness. Moreover, FeGeTe in a close-packed state exhibits terahertz shielding values of 75.1 and 103.2 dB at very thin thicknesses of 70 and 380 μm, and the average shielding value is higher than 47 dB, covering the entire bandwidth from 0.1 to 3.0 THz. Furthermore, by using FeGeTe as a patch, the wideband radar cross-section can be effectively reduced by up to 33 dBsm. Resultantly, FeGeTe will be a promising candidate in the electromagnetic protection field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.2c00512 | DOI Listing |
Nanomaterials (Basel)
January 2025
Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China.
Developing switchable and multifunctional metasurfaces is essential for high-integration photonics. However, most previous studies encountered challenges such as limited degrees of freedom, simple tuning of predefined functionality, and complicated control systems. Here, we develop a general strategy to construct switchable and multifunctional metasurfaces.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
National Key Laboratory of Scattering and Radiation, Beijing 100854, China.
The disordered assembly and low conductivity of carbon nanotubes are the main problems that limit the application of electromagnetic interference (EMI) shielding. In this work, an ordered lamellar assembly structure of multiwalled carbon nanotube/TiCT (MWCNT/TiCT) hybrid films was achieved by vacuum-assisted filtration through the hybridization of TiCT nanosheets and carbon nanotubes, where carbon nanotubes were tightly sticking on the surface of TiCT nanosheets via physical adsorption and hydrogen bonding. Compared with the pure carbon nanotubes films, the hybrid MWCNT/TiCT films achieved a significant improvement in conductivity of 452.
View Article and Find Full Text PDFLuminescence
January 2025
Analytical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt.
Herein, highly fluorescent sulfur and nitrogen co-doped carbon dots (N, S-CDs) had been employed as a fluorescent probe to analyze Cu in drinking water. The biogenic creatinine is known to form a stable complex with Cu; hence, it was rationally selected as a bioinspired nitrogen substrate for the first time to enhance N, S-CDs selectivity towards Cu. Moreover, the literature was surveyed to guide the selection of sulfur and carbon sources to optimize N, S-CDs quantum yield (QY), so thiourea and disodium edetate are co-carbonized with biogenic creatinine at 270°C for 40 min and characterized using different techniques.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Hubei Key Laboratory of Biological Resource Protection and Utilization, Enshi, 445000, China.
Background: The carbon sequestration potential and water retention capacity of peatlands are closely linked to the growth dynamics of Sphagnum mosses. However, few studies have focused on the response of Sphagnum moss growth dynamics to UV-B radiation, and existing research has emphasized species differences. In this study, Sphagnum palustre L.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware, 19716, USA.
Exceptional points (EPs) have been extensively explored in mechanical, acoustic, plasmonic, and photonic systems. However, little is known about the role of EPs in tailoring the dynamic tunability of optical devices. A specific type of EPs known as chiral EPs has recently attracted much attention for controlling the flow of light and for building sensors with better responsivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!