Etiolated Hypocotyls: A New System to Study the Impact of Abiotic Stress on Cell Expansion.

Methods Mol Biol

Plant Molecular Biology Group, Instituto Gulbenkian de Ciência, Oeiras, Portugal.

Published: April 2022

Abiotic stress impacts a wide range of plant developmental processes. Among them, cell expansion is particularly important given its contribution to plant growth and morphogenesis. Here, we describe a new phenotypic system to quantify accurately the impact of different sources of abiotic stress on the cell's capacity to expand. This approach monitors hypocotyl growth in Arabidopsis thaliana etiolated seedlings, as in the dark this embryonic organ is known to grow solely by expanding its cells, without cell division.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-2297-1_13DOI Listing

Publication Analysis

Top Keywords

abiotic stress
12
cell expansion
8
etiolated hypocotyls
4
hypocotyls system
4
system study
4
study impact
4
impact abiotic
4
stress cell
4
expansion abiotic
4
stress impacts
4

Similar Publications

Background: Cyanobacteria, particularly Synechocystis sp. PCC 6803, serve as model organisms for studying acclimation strategies that enable adaptation to various environmental stresses. Understanding the molecular mechanisms underlying these adaptations provides insight into how cells adjust gene expression in response to challenging conditions.

View Article and Find Full Text PDF

Hydrogen peroxide (HO) is a critical signaling molecule with significant roles in various physiological processes in plants. Understanding its regulation through in situ monitoring could offer deeper insights into plant responses and stress mechanisms. In this study, we developed a microneedle electrochemical sensor to monitor HO in situ, offering deeper insights into plant stress responses.

View Article and Find Full Text PDF

Anthropogenic activities such as industrial pollution of water bodies possess threat to floras leading to extinction and endangerment. This study investigates the impact of industrial pollution on vegetation along River Chenab and its associated drains. Rivers and channels transporting industrial effluents have been determined to be significantly contaminated.

View Article and Find Full Text PDF

Calcium hydroxide nanoparticles (Ca(OH)NPs) possess potent antimicrobial activities and unique physical and chemical properties, making them valuable across various fields. However, limited information exists regarding their effects on genomic DNA integrity and their potential to induce apoptosis in normal and cancerous human cell lines. This study thus aimed to evaluate the impact of Ca(OH)NPs on cell viability, genomic DNA integrity, and oxidative stress induction in human normal skin fibroblasts (HSF) and cancerous hepatic (HepG2) cells.

View Article and Find Full Text PDF

Specificity of Amino Acid Profiles Produced in Soybean Fermentations by Three spp.

J Microbiol Biotechnol

December 2024

Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea.

We compared the salt tolerance and proteolytic activity of 120 strains of each of , , and . Most strains exhibited growth in 12% (w/v) NaCl and showed proteolytic activity in 10% or 11% NaCl. The majority of strains grew in 14% NaCl and showed proteolytic activity in 12% or 13% NaCl.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!