AI Article Synopsis

  • A new method for creating light-management films using natural polymers that can control haze has been developed, blending cellulose and alginate in a simple process.
  • The cellulose acts as a haze-inducing scatterer while the alginate provides transparency, allowing for a composite film that maintains high clarity and adjustable haze levels.
  • These films demonstrate potential for diverse applications, including privacy protection and antiglare coatings, making them suitable for large-scale production.

Article Abstract

Light-management films made entirely from natural polymers with tunable haze properties are developed via a facile approach. A novel green method based simply on the blending of network cellulose (NC)/water suspension with alginate (CaAlg) aqueous solution is proposed. The unique NC suspension created by a controlled hydrolysis of microcrystalline cellulose acts as the scatterer media while alginate serves as the transparent host matrix. NC features isotropic intertwined network of nanofibers that contributes to light scattering and produces optical haze. The opaque but hazy NC is dispersed purposefully in the alginate film, where its original properties are preserved owing to its poor solubility in water. Additionally, the dispersion notably increases the roughness of the composite film surface and acts as a light scatterer. Eventually, composite CaAlg/NC film with high transparency (>94%) and customized haze (15-73%) at 550 cm wavelength is fabricated. Herein, the transparent alginate is successfully combined with the hazy cellulose of uniformly distributed nanofibers by blending to fabricate transparent/hazy all-natural films. The fabricated films exhibit high transparency with tailored transmission haze. The film is highly fitting for large-scale production and adequate to meet different haze requirements to accommodate different applications such as privacy protection films and antiglare/antireflection coatings.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.202200172DOI Listing

Publication Analysis

Top Keywords

high transparency
8
films
5
haze
5
shifting transparent/hazy
4
transparent/hazy properties
4
properties case
4
case alginate/network
4
cellulose
4
alginate/network cellulose
4
cellulose all-polysaccharide
4

Similar Publications

Can Low Structural Anisotropy Produce High Optical Anisotropy? Anomalous Giant Optical Birefringent Effect in PIAlI in Focus.

J Am Chem Soc

January 2025

Functional Crystals Lab, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Tetrahedral halides with broad transparency and large second harmonic effects have the potential to serve as mid-infrared wide-bandgap materials with balanced nonlinear-optical (NLO) properties. However, their regular tetrahedral motifs tend to exhibit low optical birefringence (Δ < 0.03) due to limited structural anisotropy, which constrains their practical phase-matched capability.

View Article and Find Full Text PDF

Regulable crack patterns for the fabrication of high-performance transparent EMI shielding windows.

iScience

January 2025

State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences (CAS), Xi'an, Shaanxi 710119, China.

Crack pattern-based metal grid film is an ideal candidate material for transparent electromagnetic interference shielding optical windows. However, achieving crack patterns with narrow grid spacing, small wire width, and high connectivity remains challenging. Herein, an aqueous acrylic colloidal dispersion was developed as a crack precursor for preparing crack patterns.

View Article and Find Full Text PDF

Environmentally tolerant multifunctional eutectogel for highly sensitive wearable sensors.

Mater Horiz

January 2025

Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.

Article Synopsis
  • Flexible hydrogel sensors have limitations in sensitivity and freezing in low temperatures, hindering their applications.
  • A new multifunctional eutectogel is developed through photopolymerization, offering properties like high transparency, anti-freezing, and self-healing.
  • This eutectogel shows exceptional performance with a high gauge factor for strain sensitivity, making it promising for flexible electronics in cold conditions.
View Article and Find Full Text PDF

A practical guide for nephrologist peer reviewers: understanding and appraising Mendelian randomization studies.

Ren Fail

December 2025

Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA.

Identifying risk factors for disease onset and progression has been a core focus in nephrology research. Mendelian Randomization (MR) has emerged as a powerful genetic epidemiological approach, utilizing genome-wide association studies (GWAS) to establish causal relationships between modifiable risk factors and kidney disease outcomes. MR uses genetic variants as instrumental variables to infer causal relationships between exposures and disease outcomes.

View Article and Find Full Text PDF

Introduction: In the era of functional intraocular lens (IOL) implantation, it is crucial to investigate the influence of different capsulorhexis sizes (including the diameter of the capsulorhexis, area of the anterior capsule opening, anterior capsule coverage, centration and circularity of the capsulorhexis) on the postoperative outcomes (eg, visual acuity, capsule shrinkage, IOL stability and intraocular pressure) in patients undergoing cataract surgery. This is particularly important in patients with high myopia or diabetes mellitus. The proposed protocol aims to enhance the transparency of our research and offer references for future studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!