Polymerized Naphthalimide Derivatives as Remarkable Electron-Transport Layers for Inverted Organic Solar Cells.

Macromol Rapid Commun

Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China.

Published: November 2022

Two polymerized naphthalimide derivatives, named as N-TBHOB and N-DBH, are prepared by quaternization. They exhibit excellent performance as electron-transport layers (ETLs) in inverted organic solar cells (i-OSCs). The results indicate N-TBHOB with a reticulated structure owns a superior performance on electron extraction, electron transport, thickness tolerance, and less carrier recombination compared with N-DBH with linear structure. The i-OSCs based on N-TBHOB with PTB7-Th:PC BM as the active layer achieve power conversion efficiencies (PCEs) of 10.72% and 10.03% under the thickness of 11 and 48 nm respectively, which indicates N-TBHOB possesses better thickness tolerance than most of organic ETLs in i-OSCs. N-TBHOB also shows more competent performance than N-DBH and ZnO in nonfullerene i-OSCs for comprehensively improved J , V , and fill factor (FF) values. Its i-OSC with PM6:Y6 blend presents a high PCE of 16.78%. The study provides an efficient strategy to prepare ETLs by combining conjugated and nonconjugated units with a reticulated structure in the backbone for high-performance i-OSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.202200119DOI Listing

Publication Analysis

Top Keywords

polymerized naphthalimide
8
naphthalimide derivatives
8
electron-transport layers
8
inverted organic
8
organic solar
8
solar cells
8
reticulated structure
8
thickness tolerance
8
n-tbhob
5
i-oscs
5

Similar Publications

Construction of single probes for simultaneous detection of common trivalent metal ions has attracted much attention due to higher efficiency in analysis and cost. A naphthalimide-based fluorescent probe K1 was synthesized for selective detection of Al, Cr and Fe ions. Fluorescence emission intensity at 534 nm of probe K1 in DMSO/HO (9:1, v/v) was significantly enhanced upon addition of Al, Cr and Fe ions while addition of other metal ions (Li, Na, K, Ag, Cu, Fe, Zn, Co, Ni, Mn, Sr, Hg, Ca, Mg, Ce, Bi and Au) did not bring about substantial change in fluorescence emission.

View Article and Find Full Text PDF

In this work, we have synthesized a multichromophoric light-harvesting antenna, namely, triad, consisting of naphthalene monoimide (NMI) and perylene monoimide (PMI) chromophores. Triad was adsorbed onto polymeric graphitic carbon nitride (g-CN) to form triad/g-CN composite, utilized as a photocatalyst for oxidative amidation reaction. This composite photocatalyst demonstrated enhanced photocatalytic activity for the conversion of a variety of aldehydes to amides, leading up to 82 % product yield compared to only g-CN or only triad as photocatalysts.

View Article and Find Full Text PDF

A Mitochondria-Targeting and Peroxynitrite-Activatable Ratiometric Fluorescent Probe for Precise Tracking of Oxidative Stress-Induced Mitophagy.

Anal Chem

December 2024

Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.

Mitochondria are the energy factory of cells and can be easily damaged by reactive oxygen species (ROS) because of the frequent occurrence of oxidative stress. Abnormality in mitophagy is often associated with many diseases including inflammation, cancer, and aging. While previously developed fluorescent probes mainly focus on detecting just ROS or mitophagy, quite rare studies have endeavored to comprehensively capture the entire mitophagic process, encompassing both the production of ROS and the induction of mitophagy.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses the importance of detecting non-steroidal anti-inflammatory drugs (NSAIDs) due to their common use and possible effects on health and the environment.
  • Recent advancements in sensing technologies for NSAIDs are explored, particularly focusing on molecular receptors using specialized fluorescent molecules and advanced nanostructured assemblies.
  • The review also addresses the binding mechanisms, challenges, and future directions in developing innovative sensors for rapid and selective NSAID detection, filling a gap in the existing literature on this topic.
View Article and Find Full Text PDF

Water-Soluble Bimodal Magnetic-Fluorescent Radical Dendrimers as Potential MRI-FI Imaging Probes.

ACS Appl Mater Interfaces

November 2024

Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, E-08193 Bellaterra, Spain.

Dual or multimodal imaging probes have become potent tools for enhancing detection sensitivity and accuracy in disease diagnosis. In this context, we present a bimodal imaging dendrimer-based structure that integrates magnetic and fluorescent imaging probes for potential applications in magnetic resonance imaging and fluorescence imaging. It stands out as one of the rare examples where bimodal imaging probes use organic radicals as the magnetic source, despite their tendency to entirely quench fluorophore fluorescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!