The effects of soft and rough substrates on suction-based adhesion.

J Exp Biol

Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA.

Published: May 2022

AI Article Synopsis

Article Abstract

The northern clingfish (Gobiesox maeandricus) has a suction-based adhesive disc that can stick to incredibly rough surfaces, a challenge for stiff commercial suction cups. Both clingfish discs and bioinspired suction cups have stiff cores but flexible edges that can deform to overcome surface irregularities. Compliant surfaces are common in nature and technical settings, but performance data for fish and commercial cups are gathered from stiff surfaces. We quantified the interaction between substrate compliance, surface roughness and suction performance for the northern clingfish, commercial suction cups and three biomimetic suction cups with disc rims of varying compliance. We found that all cups stick better on stiffer substrates and worse on more compliant ones, as indicated by peak stress values. On compliant substrates, surface roughness had little effect on adhesion, even for commercial cups that normally fail on hard, rough surfaces. We propose that suction performance on compliant substrates can be explained in part by effective elastic modulus, the combined elastic modulus from a cup-substrate interaction. Of all the tested cups, the biomimetic cups performed the best on compliant surfaces, highlighting their potential to be used in medical and marine geotechnical fields. Lastly, we discuss the overmolding technique used to generate the bioinspired cups and how it is an important tool for studying biology.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.243773DOI Listing

Publication Analysis

Top Keywords

suction cups
16
cups
10
northern clingfish
8
rough surfaces
8
commercial suction
8
compliant surfaces
8
commercial cups
8
surface roughness
8
suction performance
8
compliant substrates
8

Similar Publications

Article Synopsis
  • Inching-locomotion caterpillars (ILAR) serve as inspiration for creating 'inch-worm' robots that utilize biomimicry and can adapt to various environments, including natural and extraterrestrial settings.
  • A new mathematical method called Multi-Body Dynamics for Inching-Locomotion Caterpillar Robots (MBD-ILAR) is introduced to simulate the movement of these robots and includes calculations for factors like kinematics and dynamics, focusing on specific robot design aspects.
  • A case study was conducted to apply this method, which involved developing a graphical user interface to optimize robot actuator choices and validate the simulation results by analyzing how different parameters influence attachment forces and mechanical performance.
View Article and Find Full Text PDF

With the advent of robotics and artificial intelligence, the potential for automating tasks within human-centric environments has increased significantly. This is particularly relevant in the retail sector where the demand for efficient operations and the shortage of labor drive the need for rapid advancements in robot-based technologies. Densely packed retail shelves pose unique challenges for robotic manipulation and detection due to limited space and diverse object shapes.

View Article and Find Full Text PDF

Comparative research on monitoring methods for nitrate nitrogen leaching in tea plantation soils.

Sci Rep

September 2024

Key Laboratory of Tea Biology and Resource Utilization of Tea (Ministry of Agriculture), Tea Research Institute, Chinese Academy of Agriculture Sciences, Hangzhou, 310008, China.

Great concern has long been raised about nitrate leaching in cropland due to its possible environmental side effects in ground water contamination. Here we employed two common techniques to measure nitrate leaching in tea plantation soils in subtropical China. Using drainage lysimeter as a reference method, the adaptability of estimating drainage and nitrate leaching by combining the water balance equation with the suction cup technique was investigated.

View Article and Find Full Text PDF

Octopuses are notable creatures that can dynamically adhere to a variety of substrates owing to the efficient pressure control within their suction cups. An octopus' suckers are sealed at the rim and function by reducing the pressure inside the cavity, thereby creating a pressure difference between the ambient environment and the inner cavity. Inspired by this mechanism, we developed a plasmonic smart adhesive patch (Plasmonic AdPatch) with switchable adhesion in response to both temperature changes and near-infrared (NIR) light.

View Article and Find Full Text PDF

Biomimetic Octopus Suction Cup with Attachment Force Self-Sensing Capability for Cardiac Adhesion.

Soft Robot

December 2024

Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, Beijing, China.

This study develops a biomimetic soft octopus suction device with integrated self-sensing capabilities designed to enhance the precision and safety of cardiac surgeries. The device draws inspiration from the octopus's exceptional ability to adhere to various surfaces and its sophisticated proprioceptive system, allowing for real-time adjustment of adhesive force. The research integrates thin-film pressure sensors into the soft suction cup design, emulating the tactile capabilities of an octopus's sucker to convey information about the contact environment in real time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!