Spent lithium-ion batteries (LIBs) offer immense potential in the form of resources such as Li, transition metals (Co, Ni, and Mn), graphite, and Cu, which can be recovered through suitable recycling procedures. The Cu-current collector is recovered from spent LIBs and converted as a copper oxide (CuO) anode for Na-ion batteries. The performance of CuO is evaluated with carboxymethyl cellulose (CMC) (CuO-C), and polyvinylidene fluoride (PVdF) (CuO-P) binders in CuO half-cell and CuO/carbon-coated Na V (PO ) O F (CuO/NVPOF) full-cell assemblies. The CuO-C half-cell displays superior electrochemical performance than CuO-P in terms of cycling and rate performance showing 88% more capacity. To study the stabilization and solid electrolyte interphase growth in CuO-C, an in situ impedance study is conducted. However, the full-cell, CuO-P/NVPOF displays better capacity retention during cycling with Coulombic efficiency >95% from the second cycle, whereas CuO-C/NVPOF could hardly maintain only >90%. For conversion type CuO, it is apparent that, though the CMC binder supports half-cell performance, the PVdF binder is suitable for the practical cell/full-cell configuration.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smtd.202200257DOI Listing

Publication Analysis

Top Keywords

conversion type
8
type cuo
8
cuo
5
fabrication na-ion
4
na-ion full-cells
4
full-cells carbon-coated
4
carbon-coated cathode
4
cathode conversion
4
cuo nanoparticles
4
nanoparticles spent
4

Similar Publications

Background: Physical activity during pregnancy is a positive behavior for improving pregnancy outcomes, yet the relationship between physical activity during pregnancy and labor is still debated.

Objective: This study aimed to test our hypothesis that a higher level of physical activity during pregnancy is associated with a shorter labor duration.

Study Design: This was a prospective cohort study of pregnant women with singleton pregnancies and no contraindications to physical activity during pregnancy.

View Article and Find Full Text PDF

Based on the application demand of metal-organic framework (MOFs) materials in environmental science, energy conversion, biomedicine and other fields, its efficient synthesis method has attracted much attention. Microwave method has become one of the most competitive and potential methods because of its low cost, high efficiency and green environmental protection. However, the traditional microwave assisted synthesis of MOFs materials mostly uses microwave oven as the reaction chamber, or small-scale microwave reactor.

View Article and Find Full Text PDF

Lead-free halide double perovskites provide a promising solution for the long-standing issues of lead-containing halide perovskites, i.e., the toxicity of Pb and the low stability under ambient conditions and high-intensity illumination.

View Article and Find Full Text PDF

A multifunctional biosensor for selective identification, sensitive detection and efficient photothermal sterilization of Salmonella typhimurium and Staphylococcus aureus.

Anal Chim Acta

February 2025

Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, PR China. Electronic address:

Background: The foodborne pathogens, e.g., Salmonella typhimurium (S.

View Article and Find Full Text PDF

Cupric oxide (CuO) is a promising p-type semiconducting oxide used in many critical fields, such as energy conversion and storage, and gas sensors, which is attributed to its unique optoelectrical properties and cost-effectiveness. This work successfully deposited amorphous, pinhole-free, ultrathin CuO films using atmospheric pressure spatial atomic layer deposition (SALD) with copper(II) acetylacetonate and ozone as precursors. The growth rate increased from 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!