To reveal the neurophysiological underpinnings of natural movement, neural recordings must be paired with accurate tracking of limbs and postures. Here, we evaluated the accuracy of DeepLabCut (DLC), a deep learning markerless motion capture approach, by comparing it with a 3D X-ray video radiography system that tracks markers placed under the skin (XROMM). We recorded behavioral data simultaneously with XROMM and RGB video as marmosets foraged and reconstructed 3D kinematics in a common coordinate system. We used the toolkit Anipose to filter and triangulate DLC trajectories of 11 markers on the forelimb and torso and found a low median error (0.228 cm) between the two modalities corresponding to 2.0% of the range of motion. For studies allowing this relatively small error, DLC and similar markerless pose estimation tools enable the study of increasingly naturalistic behaviors in many fields including non-human primate motor control.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9163444 | PMC |
http://dx.doi.org/10.1242/jeb.243998 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!