In this study, we are reporting biogenic synthesis of silver nanoparticles and hydrothermal synthesis of zinc oxide nanoparticles. Using convenient mechanical milling methods, nanocomposites with superior photocatalytic and catalytic properties are synthesized. Herein, we have adopted a green, eco-friendly, and economical route for the synthesis of Ag nanoparticles using Zingiber officinalae rhizome extract in an aqueous solution. The synthesized materials were characterized using UV-Vis spectroscopy, XRD, SEM & FE-SEM, FT-IR, Raman, and a particle size analyzer with zeta potential analysis. The photocatalytic activities of Ag, ZnO and their composites were studied by observing the degradation of methylene blue and crystal violet dyes under natural sunlight. Then the catalytic efficacies of synthesized nanoparticles for various organic transformation reactions were studied. Ag-ZnO nanocomposites were predicted to have improved photocatalytic activity and organic transformation reactions, allowing them to be used in environmental remediation applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9019544 | PMC |
http://dx.doi.org/10.1007/s13204-022-02470-1 | DOI Listing |
Anal Bioanal Chem
January 2025
Center for Applied Geoscience, Department of Geosciences, Eberhard Karls University Tübingen, Tübingen, Germany.
Aminopolyphosphonates (APPs) are widely used as chelating agents, and their increasing release into the environment has raised concerns due to their transformation into aminomethylphosphonic acid (AMPA) and glyphosate, compounds of controversial environmental impact. This transformation highlights the urgent need for detailed studies under controlled conditions. Despite the availability of various methods for quantifying individual aminopolyphosphonates and aminomonophosphonates, a green, low-cost approach for the simultaneous quantification of APPs and their transformation products in laboratory experiments has been lacking.
View Article and Find Full Text PDFAcc Chem Res
January 2025
The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K.
ConspectusThe discovery of reversible hydrogenation using metal-free phosphoborate species in 2006 marked the official advent of frustrated Lewis pair (FLP) chemistry. This breakthrough revolutionized homogeneous catalysis approaches and paved the way for innovative catalytic strategies. The unique reactivity of FLPs is attributed to the Lewis base (LB) and Lewis acid (LA) sites either in spatial separation or in equilibrium, which actively react with molecules.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450052, China.
We present a visible-light-promoted radical cascade cyclization reaction sulfonylmethylation, cyano insertion, and radical cyclization of unactivated alkenes bearing cyano groups. This strategy enables the rapid synthesis of sulfonylmethylated phenanthridines under mild conditions with broad substrate compatibility, operational simplicity, and mild reaction conditions. The developed approach provides a novel pathway for assembling complex polycyclic nitrogen-containing frameworks, addressing a critical synthetic challenge and expanding the toolbox of photochemical transformations in organic synthesis.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
X-ray absorption spectroscopy (XAS) is a powerful method for exploring molecular electronic structure by exciting core electrons into higher unoccupied molecular orbitals. In this study, we present the first integration of the spin-unrestricted similarity-transformed equation-of-motion coupled cluster method (CVS-USTEOM-CCSD) for core-excited and core-ionized states into the ORCA quantum chemistry package. Using the core-valence separation (CVS) approach, we evaluate the accuracy of CVS-USTEOM-CCSD across 13 open-shell organic systems, covering over 20 core excitations with diverse spin multiplicities (doublet, triplet, and quartet).
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Organic Chemistry, Faculty of Chemistry, Alzahra University Vanak Tehran 1993893973 Iran
In this work, we present an efficient strategy for the straightforward synthesis of functionalized 1,6-dihydropyridine derivatives a three-component reaction of 3-vinylchromones, aromatic aldehydes, and ammonium acetate. A tandem procedure including NH aldimine formation/Michael-type addition/opening of the pyrone ring/isomerization/6π-electrocyclization/[1,5]-H shift allows rapid access to a series of dihydropyridines bearing an -hydroxybenzoyl and a benzoyl scaffold in good yields. Readily available precursors, simple heating conditions, and operational simplicity are some highlighted advantages of this transformation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!