A new methodology using nanoparticle projectile secondary ion mass spectrometry was developed to identify statistically significant co-localization of tagged proteins versus random aggregations at the nanoscale. The custom instrument was run in the unique event-by-event bombardment detection mode with 1040 keV Au individual projectiles each probing an area with a diameter of ∼20 nm. In a model experiment, antibodies tagged with fluorine, iodine, and bromine were attached on a silicon wafer in a 1:1:1 ratio. To determine whether the three different antibodies were homogeneously distributed at the nanoscale or if there were fluctuations due to the slightly different physical properties of the tags, a "co-localization factor" was introduced. It is shown for the first time that the differences in the hydrophobicity of the tags induced fluctuations, causing differential attachment of the tags at the nanoscale. When tags with the same physical and chemical properties were used, the analysis of co-localization factors shows that the attachment became random.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.2c00217 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!