Carbon-Doped TiNbO Suppresses Amorphization-Induced Capacity Fading.

ACS Appl Mater Interfaces

Department of Chemical and Molecular Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea.

Published: May 2022

The limited capacity of graphite anodes in high-performance batteries has led to considerable interest in alternative materials in recent years. Due to its high capacity, titanium niobium oxide (TiNbO, TNO) with a Wadsley-Roth crystallographic sheared structure holds great promise as a next-generation anode material, but a comprehensive understanding of TNO's electrochemical behavior is lacking. In particular, the mechanism responsible for the capacity fading of TNO remains poorly elucidated. Given its metastable nature (as an entropy-stabilized oxide) and the large volume change in TNO upon lithiation and delithiation, which has long been overlooked, the factors governing capacity fading warrant investigation. Our studies reveal that the structural weakness of TNO is fatal to the long-term cycling stability of TNO and that the capacity fading of TNO is driven by amorphization, which results in a significant increase in impedance. While nanostructuring can kinetically boost lithium intercalation, this benefit comes at the expense of capacity fading. Carbon doping in TNO can effectively suppress the critical impedance increase despite the amorphization, providing a possible remedy to the stability issue.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c00589DOI Listing

Publication Analysis

Top Keywords

capacity fading
20
fading tno
8
capacity
7
tno
7
fading
5
carbon-doped tinbo
4
tinbo suppresses
4
suppresses amorphization-induced
4
amorphization-induced capacity
4
fading limited
4

Similar Publications

Inner Helmholtz layer control through co-solvent strategies for high-performance copper hexacyanoferrate//zinc battery.

J Colloid Interface Sci

December 2024

Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW., Edmonton, Alberta T6G 1H9, Canada. Electronic address:

Copper hexacyanoferrate (CuHCF) demonstrates high working voltage, convenient synthesis methods, and economic benefits. However, capacity decay of CuHCF//Zn full cells is usually observed in aqueous electrolytes due to the dissolution of Cu and Fe, as indicated by the irreversible insertion of Zn ions and the consequent formation of ZnCuHCF. To address these challenges, a cathode-oriented electrolyte engineering design employing a methyl acetate (MA) co-solvent with zinc triflate (Zn(OTf)) salt electrolyte is implemented.

View Article and Find Full Text PDF

Background: The decision-making capacity of persons with mild cognitive impairment (MCI) has not been fully explored. This study aimed to examine the decision-making capacity in MCI using the outcome-representation learning model.

Method: 52 persons with MCI and 49 healthy controls were recruited in the study.

View Article and Find Full Text PDF

LiZrF protective layer enabled high-voltage LiCoO positive electrode in sulfide all-solid-state batteries.

Nat Commun

January 2025

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, China.

The application of high-voltage positive electrode materials in sulfide all-solid-state lithium batteries is hindered by the limited oxidation potential of sulfide-based solid-state electrolytes (SSEs). Consequently, surface coating on positive electrode materials is widely applied to alleviate detrimental interfacial reactions. However, most coating layers also react with sulfide-based SSEs, generating electronic conductors and causing gradual interface degradation and capacity fading.

View Article and Find Full Text PDF
Article Synopsis
  • Proton electrochemistry can create high-capacity energy storage devices beyond lithium, but water decomposition in acidic electrolytes causes issues like electrode corrosion and capacity loss.
  • Researchers developed a new non-aqueous electrolyte using micellar aggregates formed by cetyltrimethylammonium bromide (CTAB) in acetonitrile and phosphoric acid, which enhances proton transport and improves stability.
  • An optimized CTAB electrolyte led to a proton battery with significant energy density (102.8 Wh kg-1) and power density (10.1 kW kg-1), demonstrating promise for applications like grid storage and portable electronics.
View Article and Find Full Text PDF

Probing the synergistic effect of metal-organic framework derived Co-Nx rich interwoven hierarchical porous carbon tube encapsulated dual redox active nanoalloy for high-performance Zn-air battery and supercapacitor applications.

J Colloid Interface Sci

December 2024

Electric Mobility and Tribology Research Group, Council of Scientific and Industrial Research Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India. Electronic address:

Rechargeable zinc-air batteries (ZABs) with high-performance and stability is desirable for encouraging the transition of the technology from academia to industries. However, achieving this balance remains a formidable challenge, primarily due to the requirement of robust, earth-abundant reversible oxygen electrocatalyst. The present study introduces a simple strategy to synthesize Co-N rich nanoalloy with N-doped porous carbon tubes (NiCo@NPCTs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!