A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Toward Understanding the Brain Dynamics of Music: Learning and Conscious Performance of Lyrics and Melodies With Variable Rhythms and Beats. | LitMetric

Toward Understanding the Brain Dynamics of Music: Learning and Conscious Performance of Lyrics and Melodies With Variable Rhythms and Beats.

Front Syst Neurosci

Center for Adaptive Systems, Graduate Program in Cognitive and Neural Systems, Department of Mathematics & Statistics, Psychological & Brain Sciences, and Biomedical Engineering, Boston University, Boston, MA, United States.

Published: April 2022

A neural network architecture models how humans learn and consciously perform musical lyrics and melodies with variable rhythms and beats, using brain design principles and mechanisms that evolved earlier than human musical capabilities, and that have explained and predicted many kinds of psychological and neurobiological data. One principle is called : Working memories store sequential information in a rate-invariant and speaker-invariant way to avoid using excessive memory and to support learning of language, spatial, and motor skills. Stored invariant representations can be flexibly performed in a rate-dependent and speaker-dependent way under volitional control. A canonical working memory design stores linguistic, spatial, motoric, and musical sequences, including sequences with repeated words in lyrics, or repeated pitches in songs. Stored sequences of individual word chunks and pitch chunks are categorized through learning into and . Pitches chunks respond selectively to stored sequences of individual pitch chunks that categorize harmonics of each pitch, thereby supporting tonal music. Bottom-up and top-down learning between working memory and chunking networks dynamically stabilizes the memory of learned music. Songs are learned by associatively linking sequences of lyrics and pitches chunks. Performance begins when list chunks read word chunk and pitch chunk sequences into working memory. Learning and performance of regular rhythms exploits cortical modulation of beats that are generated in the basal ganglia. Arbitrary performance rhythms are learned by adaptive timing circuits in the cerebellum interacting with prefrontal cortex and basal ganglia. The same network design that controls walking, running, and finger tapping also generates beats and the urge to move with a beat.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9028030PMC
http://dx.doi.org/10.3389/fnsys.2022.766239DOI Listing

Publication Analysis

Top Keywords

working memory
12
lyrics melodies
8
melodies variable
8
variable rhythms
8
rhythms beats
8
stored sequences
8
sequences individual
8
pitch chunks
8
pitches chunks
8
basal ganglia
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!