The mismatch between bony endplates (BEPs) and grafted bone (GB) triggers several complications biomechanically. However, no published study has identified whether this factor increases the risk of screw loosening by deteriorating the local stress levels. This study aimed to illustrate the biomechanical effects of the mismatch between BEP and GB and the related risk of screw loosening. In this study, radiographic and demographic data of 56 patients treated by single segment oblique lumbar interbody fusion (OLIF) with anterior lateral single rod (ALSR) fixation were collected retrospectively, and the match sufficiency between BEP and GB was measured and presented as the grafted bony occupancy rate (GBOR). Data in patients with and without screw loosening were compared; regression analyses identified independent risk factors. OLIF with different GBORs was simulated in a previously constructed and validated lumbosacral model, and biomechanical indicators related to screw loosening were computed in surgical models. The radiographic review and numerical simulations showed that the coronal plane's GBOR was significantly lower in screw loosening patients both in the cranial and caudal vertebral bodies; the decrease in the coronal plane's GBOR has been proven to be an independent risk factor for screw loosening. In addition, numerical mechanical simulations showed that the poor match between BEP and GB will lead to stress concentration on both screws and bone-screw interfaces. Therefore, we can conclude that the mismatch between the BEP and GB will increase the risk of screw loosening by deteriorating local stress levels, and the increase in the GBOR by modifying the OLIF cage's design may be an effective method to optimize the patient's prognosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9023805 | PMC |
http://dx.doi.org/10.3389/fbioe.2022.862951 | DOI Listing |
Orthop Surg
January 2025
Department of Orthopaedic and Traumatology, Trabzon Kanuni Training and Research Hospital, Trabzon, Turkey.
Objective: Despite several surgical options, there has yet to be a consensus on the best treatment for femoral neck fracture (FNF) due to higher complication rates compared to other bone fractures. This study aims to examine the possible consequences and solution suggestions of changing screws during surgery for various reasons in FNF surgical treatment from a biomechanical perspective.
Method: FNF and treatment materials were analyzed biomechanically using a package program based on the finite element method (FEM).
Chin J Traumatol
December 2024
Department of Orthopaedics, Xinhua Hospital of Zhejiang Province, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310003, China.
Purpose: Bone cement-reinforced fenestrated pedicle screws (FPSs) have been widely used in the internal fixation and repair of the spine with osteoporosis in recent years and show significant improvement in fixation strength and stability. However, compared with conventional reinforcement methods, the advantages of bone cement-reinforced FPSs remain undetermined. This article compares the effects of fenestrated and conventional pedicle screws (CPSs) combined with bone cement in the treatment of osteoporosis.
View Article and Find Full Text PDFBrain Spine
December 2024
Department of Neurosurgery, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
J Orthop Surg Res
December 2024
Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
Objective: This study aims to explore the predictive value of endplate morphology and pedicle screw bone quality score on screw loosening after single-level lumbar spinal fusion surgery.
Methods: A retrospective analysis was conducted on the clinical data of 207 patients who underwent single-level lumbar spinal fusion (34 in the screw loosening group and 173 in the non-screw loosening group). Univariate analysis and binary logistic regression model analysis were performed using SPSS 27.
Indian J Orthop
January 2025
Department of Orthopaedic Surgery, Hillel Yaffe M.C., 3100 Hadera, Israel.
Objective: To present the clinical result of spinal fixation system made entirely of Carbon-Fiber-Reinforced (CFR)-Hybrid Polyaryl-Ether-Ether-Ketone (PEEK).
Summary Of Background Data: Fusion surgery has been used to treat chronic low back pain caused by degenerative disk disease (DDD). The traditional pedicle screw system made of titanium, though biocompatible, can lead to complications, such as stress shielding and implant failure.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!