Nanocomposite technologies can be significantly enhanced through a careful exploration of the effects of agglomerates on mechanical properties. Existing models are either overly simplified (e.g., neglect agglomeration effects) or often require a significant amount of computational resources. In this study, a novel continuum-based model with a statistical approach was developed. The model is based on a modified three-phase Mori-Tanaka model, which accounts for the filler, agglomerate, and matrix regions. Fillers are randomly dispersed in a defined space to predict agglomeration tendency. The proposed model demonstrates good agreement with the experimentally measured elastic moduli of spin-coated cellulose nanocrystal reinforced polyamide-6 films. The techniques and methodologies presented in the study are sufficiently general in that they can be extended to the analyses of various types of polymeric nanocomposite systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9016679 | PMC |
http://dx.doi.org/10.1177/00219983221076639 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!