The great clinical success of chimeric antigen receptor (CAR) T cells has unlocked new levels of immunotherapy for hematological malignancies. Genetically modifying natural killer (NK) cells as alternative CAR immune effector cells is also highly promising, as NK cells can be transplanted across HLA barriers without causing graft-versus-host disease. Therefore, usage of CAR NK cell products might allow to widely expand the clinical indications and to limit the costs of treatment per patient. However, in contrast to T cells, manufacturing suitable CAR NK cell products is challenging, as standard techniques for genetically engineering NK cells are still being defined. In this study, we have established optimal lentiviral transduction of primary human NK cells by systematically testing different internal promoters for lentiviral CAR vectors and comparing lentiviral pseudotypes and viral entry enhancers. We have additionally modified CAR constructs recognizing standard target antigens for acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) therapy-CD19, CD33, and CD123-to harbor a CD34-derived hinge region that allows efficient detection of transduced NK cells and and also facilitates CD34 microbead-assisted selection of CAR NK cell products to >95% purity for potential clinical usage. Importantly, as most leukemic blasts are immunogenic for activated primary human NK cells, we developed an system that blocks the activating receptors NKG2D, DNAM-1, NKp30, NKp44, NKp46, and NKp80 on these cells and therefore allows systematic testing of the specific killing of CAR NK cells against ALL and AML cell lines and primary AML blasts. Finally, we evaluated in an ALL xenotransplantation model in NOD/SCID-gamma (NSG) mice whether human CD19 CAR NK cells directed against the CD19+ blasts are relying on soluble or membrane-bound IL15 production for NK cell persistence and also leukemia control. Hence, our study provides important insights into the generation of pure and highly active allogeneic CAR NK cells, thereby advancing adoptive cellular immunotherapy with CAR NK cells for human malignancies further.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9022481PMC
http://dx.doi.org/10.3389/fimmu.2022.847008DOI Listing

Publication Analysis

Top Keywords

car cells
20
cells
15
human cells
12
car cell
12
cell products
12
car
11
immunotherapy hematological
8
hematological malignancies
8
primary human
8
human
5

Similar Publications

ErbB3 is markedly overexpressed in breast cancer cells and is associated with resistance and metastasis. Additionally, ErbB3 expression levels are positively correlated with low densities of tumor-infiltrating lymphocytes, a marker of poor prognosis. Consequently, ErbB3 is a promising therapeutic target for cancer immunotherapy.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cell therapy for solid tumors faces significant challenges, including inadequate infiltration, limited proliferation, diminished effector function of CAR T cells, and an immunosuppressive tumor microenvironment (TME). In this study, we utilized The Cancer Genome Atlas database to identify key chemokines (CCL4, CCL5, and CCR5) associated with T cell infiltration across various solid tumor types. The CCL4/CCL5-CCR5 axis emerged as significantly correlated with the presence of T cells within tumors, and enhancing the expression of CCR5 in CAR T cells bolstered their migratory capacity.

View Article and Find Full Text PDF

[Anti-tumor therapy strategy of CAR-T cells based on stem cell memory and central memory cells].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

December 2024

Center for Cancer Immunotherapy, Institute of Biomedicine and Biotechnology, Chinese Academy of Sciences, Shenzhen 518055; University of Chinese Academy of Sciences, Beijing 101408; Laboratory of Human Environmental Epigenomes, Department of Biopharmaceutical Sciences, School of Pharmaceutical Science, Shenzhen University of Advanced Technology, Shenzhen 518107, China.*Corresponding author, E-mail:

Cancer immunotherapy including immune checkpoint inhibitors and adoptive cell therapy has gained revolutionary success in the treatment of hematologic tumors; however, it only gains limited success in solid tumors. For example, chimeric antigen receptor T (CAR-T) cell therapy has shown significant effects and potential for curing patients with B-cell malignancies. In contrast, it remains a challenge for CAR-T cell therapy to gain similar success in solid tumors.

View Article and Find Full Text PDF

CAR T-cell therapy for systemic lupus erythematosus: current status and future perspectives.

Front Immunol

January 2025

Innovation & Research Department, OriCell Therapeutics Co. Ltd., Shanghai, China.

Systemic lupus erythematosus (SLE) and lupus nephritis (LN) are debilitating autoimmune disorders characterized by pathological autoantibodies production and immune dysfunction, causing chronic inflammation and multi-organ damage. Despite current treatments with antimalarial drugs, glucocorticoids, immunosuppressants, and monoclonal antibodies, a definitive cure remains elusive, highlighting an urgent need for novel therapeutic strategies. Recent studies indicate that chimeric antigen receptor T-cell (CAR-T) therapy has shown promising results in treating B-cell malignancies and may offer a significant breakthrough for non-malignant conditions like SLE.

View Article and Find Full Text PDF

Gamma delta T cells in cancer therapy: from tumor recognition to novel treatments.

Front Med (Lausanne)

December 2024

The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China.

Traditional immunotherapies mainly focus on αβ T cell-based strategies, which depend on MHC-mediated antigen recognition. However, this approach poses significant challenges in treating recurrent tumors, as immune escape mechanisms are widespread. γδ T cells, with their ability for MHC-independent antigen presentation, offer a promising alternative that could potentially overcome limitations observed in traditional immunotherapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!