Natural products, characterized by intriguing scaffold diversity and structural complexity, as well as significant agricultural and medicinal activities, have been a valuable source of agrochemicals/drugs development and have historically made a huge contribution to pharmacotherapy. Structurally, bisabolanes are a family of naturally occurring sesquiterpenoids that featured a hexatomic ring core incorporating with eight continuous carbons, which cause high structural variability along the alkyl side chain to form abundant functionalities. Moreover, apart from their interesting structures, bisabolanes have shown multitudinous bioactivities. Bisabolanes are distributed in a variety of marine invertebrates, terrestrial plant, and microbial sources. Interestingly, bisabolanes characterized from marine environment possess unique characteristics both structurally and biologically. A total of 296 newly-discovered bisabolanes were searched. Among them, 94 members were isolated from marine organisms. This review particularly focuses on the new bisabolanes characterized from marine organisms (covering from 2000 to 2021), including marine-derived fungi, algae, soft corals, and sponges, with emphasis on the diversity of their chemical structures as well as the novelty and differences between terrestrial and marine sources. Moreover, a wide range of bioactivities of marine-derived bisabolanes, including antimicrobial, anti-inflammatory, enzyme inhibitory, and cytotoxic properties, are presented herein, which is considered to be a promising resource for the discovery of new drug leads and agrochemicals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9021493 | PMC |
http://dx.doi.org/10.3389/fchem.2022.881767 | DOI Listing |
Int J Mol Sci
December 2024
State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
Abscisic acid (ABA) is a key phytohormone that participates in various plant biological processes, such as seed germination, senescence, stomatal movement, and flowering. In the ABA signal transduction pathway, Pyrabactin Resistance 1 (PYR1)/PYR1-Like (PYL)/Regulatory Component is the core module for ABA perception. In this study, a total of 12 PYL family members were identified in birch ( Suk.
View Article and Find Full Text PDFNat Commun
December 2024
State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
Fruit ripening is a highly-orchestrated process that requires the fine-tuning and precise control of gene expression, which is mainly governed by phytohormones, epigenetic modifiers, and transcription factors. How these intrinsic regulators coordinately modulate the ripening remains elusive. Here we report the identification and characterization of FvALKBH10B as an N-methyladenosine (mA) RNA demethylase necessary for the normal ripening of strawberry (Fragaria vesca) fruit.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Department of Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China.
This study explores the development and application of gold and 4-mercaptopyridine (MPY) perovskite-engineered robust nanofibers (GLAMPER-NFs) for the ultrasensitive detection of Abscisic acid (ABA) under Raman spectroscopy, a crucial plant hormone. The GLAMPER-NFs composite material, consisting of MAPbCl nanofibers integrated with MPY-coated gold nanostructures, demonstrates exceptional performance in surface-enhanced Raman scattering (SERS)-based sensing. The study elucidates the material structure and properties through comprehensive characterization using scanning electron microscopy (SEM), UV-vis spectroscopy, fluorescence spectroscopy, Fourier transform infrared, and Raman spectroscopy.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China; North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, Hebei, China. Electronic address:
Heat Shock Protein plays a vital role in maintaining protein homeostasis and protecting cells from stress stimulation. As one of the HSP40 proteins, DnaJ is a stress response protein widely existing in plant cells. The function and regulatory mechanism of ZmDnaJ, a novel chloroplast-localized type-III HSP40, in maize drought tolerance were characterized.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!