Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Colorectal Cancer (CRC) is the third most dangerous cancer in the world and also increasing day by day. So, timely and accurate diagnosis is required to save the life of patients. Cancer grows from polyps which can be either cancerous or noncancerous. So, if the cancerous polyps are detected accurately and removed on time, then the dangerous consequences of cancer can be reduced to a large extent. The colonoscopy is used to detect the presence of colorectal polyps. However, manual examinations performed by experts are prone to various errors. Therefore, some researchers have utilized machine and deep learning-based models to automate the diagnosis process. However, existing models suffer from overfitting and gradient vanishing problems. To overcome these problems, a convolutional neural network- (CNN-) based deep learning model is proposed. Initially, guided image filter and dynamic histogram equalization approaches are used to filter and enhance the colonoscopy images. Thereafter, Single Shot MultiBox Detector (SSD) is used to efficiently detect and classify colorectal polyps from colonoscopy images. Finally, fully connected layers with dropouts are used to classify the polyp classes. Extensive experimental results on benchmark dataset show that the proposed model achieves significantly better results than the competitive models. The proposed model can detect and classify colorectal polyps from the colonoscopy images with 92% accuracy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9033358 | PMC |
http://dx.doi.org/10.1155/2022/2805607 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!