Optimization-Based Ensemble Feature Selection Algorithm and Deep Learning Classifier for Parkinson's Disease.

J Healthc Eng

Department of Chemical Engineering, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.

Published: April 2022

PD (Parkinson's Disease) is a severe malady that is painful and incurable, affecting older human beings. Identifying PD early in a precise manner is critical for the lengthened survival of patients, where DMTs (data mining techniques) and MLTs (machine learning techniques) can be advantageous. Studies have examined DMTs for their accuracy using Parkinson's dataset and analyzing feature relevance. Recent studies have used FMBOAs for feature selections and relevance analyses, where the selection of features aims to find the optimal subset of features for classification tasks and combine the learning of FMBOAs. EFSs (ensemble feature selections) are viable solutions for combining the benefits of multiple algorithms while balancing their drawbacks. This work uses OBEFSs (optimization-based ensemble feature selections) to select appropriate features based on agreements. Ensembles have the ability to combine results from multiple feature selection approaches, including FMBOAs, LFCSAs (Lévy flight cuckoo search algorithms), and AFAs (adaptive firefly algorithms). These approaches select optimized feature subsets, resulting in three feature subsets, which are subsequently matched for correlations by ensembles. The optimum features are generated by OBEFSs the trained on FCBi-LSTMs (fuzzy convolution bi-directional long short-term memories) for classifications. This work's suggested model uses the UCI (University of California-Irvine) learning repository, and the methods are evaluated using LOPO-CVs (Leave-One-Person-Out-Cross Validations) in terms of accuracies, F-measure values, and MCCs (Matthews correlation coefficients).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9020934PMC
http://dx.doi.org/10.1155/2022/1487212DOI Listing

Publication Analysis

Top Keywords

ensemble feature
12
feature selections
12
optimization-based ensemble
8
feature
8
feature selection
8
parkinson's disease
8
feature subsets
8
selection algorithm
4
algorithm deep
4
learning
4

Similar Publications

Background: Air pollution is a major public health threat globally. Health studies, regulatory actions, and policy evaluations typically rely on air pollutant concentrations from single exposure models, assuming accurate estimations and ignoring related uncertainty. We developed a modeling framework, bneR, to apply the Bayesian Nonparametric Ensemble (BNE) prediction model that combines existing exposure models as inputs to provide air pollution estimates and their spatio-temporal uncertainty.

View Article and Find Full Text PDF

The growing demand for biological products drives many efforts to maximize expression of heterologous proteins. Advances in high-throughput sequencing can produce data suitable for building sequence-to-expression models with machine learning. The most accurate models have been trained on one-hot encodings, a mechanism-agnostic representation of nucleotide sequences.

View Article and Find Full Text PDF

Objective: Autism spectrum disorder (ASD) is a complex neurodevelopmental condition influenced by various genetic and environmental factors. Currently, there is no definitive clinical test, such as a blood analysis or brain scan, for early diagnosis. The objective of this study is to develop a computational model that predicts ASD driver genes in the early stages using genomic data, aiming to enhance early diagnosis and intervention.

View Article and Find Full Text PDF

In the present digital scenario, the explosion of Internet of Things (IoT) devices makes massive volumes of high-dimensional data, presenting significant data and privacy security challenges. As IoT networks enlarge, certifying sensitive data privacy while still employing data analytics authority is vital. In the period of big data, statistical learning has seen fast progressions in methodological practical and innovation applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!