Bacterial biofilms are a big menace to industries and the environment and also in the health sector, accumulation of which is a major challenge. Despite intensive efforts to curb this issue, a definitive solution is yet to be achieved. Enzyme-templated disruption of the extracellular matrix of biofilm and its control and elimination are emerging as an efficient and greener strategy. The study describes the antibiofilm potential of alpha-amylase from the marine microorganism PCI05, against food-borne pathogens. Amylase exhibited stability in a wide pH range and retained 50% of its activity at temperatures as high as 100°C. Thermal analysis of the enzyme produced showed thermal stability, up to 130°C. From these findings, it can be envisaged that the alpha-amylase produced from can be used for starch liquefaction; it was also evaluated for antibiofilm activity. Amylase from this marine bacterium was found to efficiently disrupt the preformed biofilms of food-borne pathogens such as , , , , and serotype Typhi based on the value of biofilm inhibitory concentrations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9033359 | PMC |
http://dx.doi.org/10.1155/2022/7480382 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!