LINC00963: A potential cancer diagnostic and therapeutic target.

Biomed Pharmacother

Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China; Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China. Electronic address:

Published: June 2022

AI Article Synopsis

  • LINC00963 is an intergenic noncoding RNA located on chromosome 9q34.11 and is often overexpressed in various cancers, promoting processes like cell proliferation, migration, and invasion, which are tied to poor prognosis.
  • The RNA contributes to cancer development through several mechanisms, including binding to multiple miRNAs, regulating specific protein-coding genes, and forming feedback loops that enhance metastasis in non-small cell lung cancer.
  • Additionally, LINC00963 is linked to important signaling pathways, plays a role in drug resistance in certain cancers, and holds potential as a biomarker for diagnosis and treatment evaluation.

Article Abstract

Long intergenic noncoding RNA 00963 (LINC00963) is located on human chromosome 9q34.11. Aberrantly expressed LINC00963 often exerts oncogenic effects by regulating various cellular processes including proliferation, migration, invasion, EMT, and apoptosis. Overexpressed LINC00963 is associated with cancer clinicopathological features and poor cancer prognosis, and can be used in the diagnosis of hepatocellular carcinoma. LINC00963 can build a complex ceRNA network by competitively binding to 22 miRNAs in 14 cancers. LINC00963 can also directly regulate four downstream protein-coding genes. Specifically, LINC00963 promotes the transition of prostate cancer from an androgen-dependent mode to an androgen-independent mode by participating in the transactivation of EGFR. LINC00963 can bind EZH2 and inhibit p21 expression, thereby promoting glioma cell proliferation and invasion. In non-small cell lung cancer, LINC00963 can recruit NONO and CRTC, forming a positive feedback loop of LINC00963/NONO/CRTC/CREB/LINC00963, thereby promoting cancer cell metastasis. LINC00963 is involved in the PI3K/AKT signaling pathway, Wnt signaling pathway, AMPK signaling pathway, and MAPK signaling pathway. Furthermore, LINC00963 is associated with drug resistance in oral squamous cell carcinoma (cisplatin and 5-fluorouracil) and gastric cancer (oxaliplatin) and predicts neoadjuvant efficacy of taxane-anthracyclines in breast cancer. This work systematically reviewed the clinical value of abnormal expression of LINC00963 in various tumors, demonstrated the complex molecular mechanism of LINC00963, and provided directions for future related research.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2022.113019DOI Listing

Publication Analysis

Top Keywords

signaling pathway
16
linc00963
13
cancer
8
linc00963 associated
8
linc00963 potential
4
potential cancer
4
cancer diagnostic
4
diagnostic therapeutic
4
therapeutic target
4
target long
4

Similar Publications

Purpose: Less than 5% of GI stromal tumors (GISTs) are driven by the loss of the succinate dehydrogenase (SDH) complex, resulting in a pervasive DNA hypermethylation pattern that leads to unique clinical features. Advanced SDH-deficient GISTs are usually treated with the same therapies targeting KIT and PDGFRA receptors as those used in metastatic GIST. However, these treatments display less activity in the absence of alternative therapeutic options.

View Article and Find Full Text PDF

Objective: To explore more and better liquid biopsy markers of exosomal microRNAs (exo-miRNAs) in renal interstitial fibrosis (RIF) and to preliminary investigate the biological functions and signaling pathways involved in these markers.

Materials And Methods: High-throughput miRNA sequencing was performed on blood and urine exo-miRNAs from three RIF patients and three healthy volunteers, and differential expression analysis and bioinformatic processing were performed.

Results: There were 13 differentially expressed exo-miRNA (DEexo-miRNA) between RIF and healthy blood, and 20 DEexo-miRNAs in urine.

View Article and Find Full Text PDF

The extracellular matrix (ECM) stores signaling molecules and facilitates mechanical and biochemical signaling in cells. However, the influence of biomimetic "rejuvenation" ECM structures on aging- and degeneration-related cellular activities and tissue repair is not well understood. We combined physical extrusion and precise "on-off" alternating cross-linking methods to create anisotropic biomaterial microgels (MicroRod and MicroSphere) and explored how they regulate the cell activities of the nucleus pulposus (NP) and their potential antidegenerative effects on intervertebral discs.

View Article and Find Full Text PDF

Discovery of Potent, Highly Selective, and Orally Bioavailable MTA Cooperative PRMT5 Inhibitors with Robust Antitumor Activity.

J Med Chem

January 2025

Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China.

Protein arginine methyltransferase 5 (PRMT5), which catalyzes the symmetric dimethylation of arginine residues on target proteins, plays a critical role in gene expression regulation, RNA processing, and signal transduction. Aberrant PRMT5 activity has been implicated in cancers and other diseases, making it a potential therapeutic target. Here, we report the discovery of a methylthioadenosine (MTA) cooperative PRMT5 inhibitor.

View Article and Find Full Text PDF

This work established the cytotoxic, antioxidant and anticancer effects of copper nanoparticles (CuNPs) manufactured with fennel extract, especially on non-small cell lung cancer (NSCLC) as well. CuNPs caused cytotoxicity in a dose-dependent manner for two NSCLC cell lines, A549 and H1650. At 100 μg/ml, CuNPs reduced cell viability to 70% in A549 cells and 65% in H1650 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!