The aim of this study was to examine non-starch polysaccharide (NSP) degradation in the gastrointestinal tract of chickens fed a range of commercial-type diets supplemented with a commercial dose of xylanase, a double dose of xylanase or a cocktail of NSP - degrading enzymes. Cobb 500 broilers (n = 1,080) were fed 12 dietary treatments; 4 diets with differing primary grain sources (barley, corn, sorghum, and wheat) and three different enzyme treatments (commercial recommended dose of xylanase (16,000 BXU/kg), a double dose of xylanase (32,000 BXU/kg) or an NSP-degrading enzyme cocktail (xylanase, β-glucanase, cellulase, pectinase, mannanase, galactanase, and arabinofuranosidase at recommended commercial levels). There were 108 pens, approximately 10 birds per pen, 9 replicates per dietary treatment. The diets were fed as 3 phases, starter (d 0-12), grower (d 12-23), and finisher (d 23-35). On bird age d 12, 23, and 35, performance (total pen body weight, feed intake, and feed conversion ratio corrected for mortality [cFCR]), litter and excreta dry matter content, and ileal and total tract soluble and insoluble NSP degradability and free oligosaccharide digestibility was determined. On d 35, the quantity of NSP in the gizzard, jejunum, ileum and excreta was determined. Results from this study showed that the double xylanase dose and NSP-ase cocktail had positive impacts on starter phase performance in birds fed the corn- and wheat-based diets. In the grower phase in birds fed the barley-based diet, these enzyme treatments improved cFCR and increased litter dry matter content. The NSP-ase cocktail had a negative impact on finisher phase cFCR in birds fed the sorghum-based diet. The double xylanase dose induced a positive impact on NSP degradability and free oligosaccharide digestibility. In conclusion, there appears to be advantages to feeding broilers a double xylanase dose, but lack of consistency when using an NSP-ase cocktail containing many enzymes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9048112 | PMC |
http://dx.doi.org/10.1016/j.psj.2022.101846 | DOI Listing |
The food enzyme endo 1,4-β-xylanase (4-β-d-xylan xylanohydrolase, EC 3.2.1.
View Article and Find Full Text PDFThe food enzyme endo-1,4-β-xylanase (4-β-d-xylan xylanohydrolase; EC 3.2.1.
View Article and Find Full Text PDFFood Res Int
December 2024
Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil.
Poult Sci
December 2024
CJ Cheiljedang Co., Seoul 04560, Republic of Korea. Electronic address:
Xylanases require thermal stability to withstand the pelleting process, pH stability to function in the gastrointestinal tract, and resistance to xylanase inhibitors in raw materials to be effective in animal feed. A GH11 family xylanase originating from an anaerobic fungus, Orpinomyces sp. strain PC-2, has high specific activity and resistance to xylanase inhibitors intrinsically.
View Article and Find Full Text PDFMicroorganisms
October 2024
College of Grassland Science, Inner Mongolia Agricultural University, Hohhot 010019, China.
As a large agricultural country, China produces a large number of agricultural and sideline products while harvesting agricultural products every year. Crop straw is one of them. Broom sorghum is a traditional crop in China, which produces a large amount of straw resources every year.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!