Chitosan (Ch), vermiculite (V) and lignin (L) were used as the components of a natural composite adsorbent (Ch-VL) for the removal of the UO ions in aqueous solutions. During the study, we recorded and analyzed the initial UO ion concentration, initial pH, contact time, temperature, and recovery. The recycling performance of the Ch-VL composite was assessed by three sequential adsorption/desorption experiments. Adsorption performance of the Ch-VL composite for UO ions was 600 mg L at pH 4.5 and temperature of 25 °C. Thermodynamic findings, ΔH:28.1 kJ mol, and ΔG:-14.1 kJ mol showed that adsorption behavior was endothermic and spontaneous. Its maximum adsorption capacity was 0.322 mol kg, obtained from the Langmuir isotherm model. The adsorption kinetics indicated that it followed the pseudo-second-order and intraparticle diffusion rate kinetics. The adsorption thermodynamic shown indicated that the UO ion adsorption was both spontaneous and endothermic. The adsorption process was enlightened by FT-IR and SEM-EDX analyses. The study suggested a simple and cost-effective approach for the removal of toxic UO ions from wastewater. To highlight the adsorption mechanism, DFT calculations were performed. Theoretical results are in good agreement with experimental observations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2022.04.128 | DOI Listing |
Polymers (Basel)
December 2024
Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology, Xi'an 710021, China.
This study introduces a novel water-insoluble dispersant for coal water slurry (CWS), namely, a poly(sodium styrene sulfonate)- SiO nanoparticle (SiO--PSSNa). SiO--PSSNa was synthesized by combining the surface acylation reaction with surface-initiated atom transfer radical polymerization (SI-ATRP). Fourier transform infrared spectrometry (FTIR), X-ray photoelectron spectroscopy (XPS), energy dispersive spectrometer (EDS), nuclear magnetic resonance spectroscopy (NMR) and thermogravimetric analysis (TGA) verified that SiO--PSSNa with the desired structure was successfully obtained.
View Article and Find Full Text PDFEnviron Res
January 2025
Department of Chemical Engineering, BITS Pilani Hyderabad Campus, Hyderabad-500078, India.
In this work, a novel adsorbent from alginate, zeolite and biochar has been made through one-pot synthesis route with highly compatible Sodium Dodecyl Sulphate (SDS) modification. This gave ultra-high Ni removal of 1205 mg/g in batch mode while treating almost 200 L of solution in column mode with 1171 mg/g capacity, which are the one of the highest reported values. The Point of Zero Charge (pH) for Ni removal was determined to be 5, with optimal removal efficiency being observed at pH 7, indicating a negative surface charge of the ABPC beads, which aligns with the anionic charge provided by SDS enhancement.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemical Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar 144008, Punjab, India.
Int J Biol Macromol
January 2025
Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia. Electronic address:
In this work, graphitic carbon nitride (g-CN) prepared by thermal treatment, graphitic carbon nitride/chitosan (GCS), and graphitic carbon nitride/chitosan embedded thiosemicarbazide (TGCS) were developed as an effective solid adsorbent. The fabricated adsorbents were characterized by nitrogen adsorption, ATR-FTIR, TGA, XRD, ζ potential, SEM, and TEM, where TGCS composite had a higher surface area (536.79 m/g), total pore volume (0.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China.
A carbon-magnetic modified sepiolite nanocomposite (γ-FeO/SiO-Mg(OH)@BC) was synthesized using a hydrothermal method, consisting of γ-FeO, activated sludge biochar (BC), and alkali-modified sepiolite. Its ability to remove heavy metals such as Sb(V), Pb(II), Cd(II), and Zn(II) was investigated through adsorption experiments. Using response surface optimization, the optimal adsorption conditions were determined: adsorption time = 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!