The COVID-19 pandemic continues to be a public health threat with emerging variants of SARS-CoV-2. Nirmatrelvir (PF-07321332) is a reversible, covalent inhibitor targeting the main protease (M) of SARS-CoV-2 and the active protease inhibitor in PAXLOVID (nirmatrelvir tablets and ritonavir tablets). However, the efficacy of nirmatrelvir is underdetermined against evolving SARS-CoV-2 variants. Here, we evaluated the in vitro catalytic activity and potency of nirmatrelvir against the M of prevalent variants of concern (VOCs) or variants of interest (VOIs): Alpha (α, B.1.1.7), Beta (β, B.1.351), Delta (δ, B1.617.2), Gamma (γ, P.1), Lambda (λ, B.1.1.1.37/C37), Omicron (ο, B.1.1.529), as well as the original Washington or wildtype strain. These VOCs/VOIs carry prevalent mutations at varying frequencies in the M specifically for α, β, γ (K90R), λ (G15S), and ο (P132H). In vitro biochemical enzymatic assay characterization of the enzyme kinetics of the mutant M demonstrates that they are catalytically comparable to wildtype. We found that nirmatrelvir has similar potency against each mutant M including P132H that is observed in the Omicron variant with a Ki of 0.635 nM as compared to a Ki of 0.933 nM for wildtype. The molecular basis for these observations were provided by solution-phase structural dynamics and structural determination of nirmatrelvir bound to the ο, λ, and β M at 1.63 to 2.09 Å resolution. These in vitro data suggest that PAXLOVID has the potential to maintain plasma concentrations of nirmatrelvir many-fold times higher than the amount required to stop the SARS-CoV-2 VOC/VOI, including Omicron, from replicating in cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9023115 | PMC |
http://dx.doi.org/10.1016/j.jbc.2022.101972 | DOI Listing |
Nirmatrelvir/ritonavir is a novel drug combination authorized by the US Food and Drug Administration for the treatment of coronavirus disease 2019 (COVID-19). This report describes the case of a patient with a prior history of kidney transplantation who received nirmatrelvir/ritonavir. In this case, sirolimus use was successfully stopped before nirmatrelvir/ritonavir treatment, and the nirmatrelvir/ritonavir trough concentration was determined.
View Article and Find Full Text PDFAnn Acad Med Singap
December 2024
Clinical Research Unit, National Healthcare Group Polyclinics, Singapore.
Sci Rep
January 2025
Department of Pharmacy, Shanghai Gonghui Hospital, Shanghai, People's Republic of China.
Elderly patients with multiple concomitant chronic diseases are the particularly vulnerable during the Coronavirus disease 2019 (COVID-19) epidemic, which accounts for a large number of COVID-19-related deaths. The purpose of the study was to investigate the impact of polypharmacy and potentially inappropriate medications (PIMs) on in-hospital mortality in a secondary hospital in China. A cross-sectional, retrospective study was conducted using electronic medical data collected from Shanghai Gonghui Hospital from April 2022 to June 2022.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry, Columbia University, New York, NY, USA.
Variants of SARS-CoV-2 have continued to emerge across the world and cause hundreds of deaths each week. Due to the limited efficacy of vaccines against SARS-CoV-2 and resistance to current therapies, additional anti-viral therapeutics with pan-coronavirus activity are of high interest. Here, we screen 2.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Biochemistry and Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77845, United States.
SARS-CoV-2 3CL protease (Main protease) and human cathepsin L are proteases that play unique roles in the infection of human cells by SARS-CoV-2, the causative agent of COVID-19. Both proteases recognize leucine and other hydrophobic amino acids at the P position of a peptidomimetic inhibitor. At the P position, cathepsin L accepts many amino acid side chains, with a partial preference for phenylalanine, while 3CL-PR protease has a stringent specificity for glutamine or glutamine analogues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!