Surfactants such as Poloxamer 188 (PX188) play an important role in controlling particle formation in biotherapeutic formulations due to interfacial stresses. This study demonstrates for the first time that hydrophobicity of PX188 is a potential critical material attribute (CMA) as far as control of visible particle (VP) formation is concerned. We have found that within PX188 lots satisfying pharmacopeial specifications, there is variability in material attributes such as hydrophobicity, as determined from their reversed-phase high-performance liquid chromatography profiles. However, it currently remains unknown how such variability in hydrophobicity of PX188 affects surfactant function and VP formation. Here, we compared the effect of seven PX188 lots in two monoclonal antibody drug product formulations under various stress conditions. Notably, proteinaceous VP formation was reduced while using a PX188 lot with higher hydrophobicity. Our findings emphasize the importance of monitoring lot-to-lot variability of PX188 and provide insight into potential CMA for improving and controlling material attributes of PX188 for use in liquid biotherapeutic formulations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xphs.2022.04.012DOI Listing

Publication Analysis

Top Keywords

material attributes
12
particle formation
12
poloxamer 188
8
visible particle
8
monoclonal antibody
8
px188
8
biotherapeutic formulations
8
hydrophobicity px188
8
px188 lots
8
formation
5

Similar Publications

Sorafenib-Loaded Silica-Containing Redox Nanoparticle Decreases Tumorigenic Potential of Lewis Lung Carcinoma.

Pharmaceutics

January 2025

Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8573, Ibaraki, Japan.

Orally administered sorafenib has shown limited improvement in overall survival for non-small-cell lung cancer patients, likely due to poor pharmacokinetics and adverse effects, including gastrointestinal toxicity. To address these issues, we developed silica-containing antioxidant nanoparticles (siRNP) as a carrier to enhance the therapeutic efficacy of lipophilic sorafenib. Sorafenib was loaded into siRNP via dialysis (sora@siRNP).

View Article and Find Full Text PDF

In recent years, with the increasing patient population, the need for complex and patient-centric medications has increased enormously. Traditional manufacturing techniques such as direct blending, high shear granulation, and dry granulation can be used to develop simple solid oral medications. However, it is well known that "one size fits all" is not true for pharmaceutical medicines.

View Article and Find Full Text PDF

The effectiveness of ultraviolet-C light-emitting diodes (UVC LEDs) is currently limited by the lack of suitable encapsulation materials, restricting their use in sterilization, communication, and in vivo cancer tumor inhibition. This study evaluates various silicone oils for UVC LED encapsulation. A material aging experiment was conducted on CF1040 (octamethylcyclotetrasiloxane), HF2020 (methyl hydro polysiloxanes), and MF2020-1000 (polydimethylsiloxane) under UVC radiation for 1000 h.

View Article and Find Full Text PDF

Recent Advancements of Bio-Derived Flame Retardants for Polymeric Materials.

Polymers (Basel)

January 2025

School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia.

The sustainable flame retardancy of polymeric materials is a key focus for the direction of the next generation in the field of fire safety. Bio-derived flame retardants are gaining attention as environmentally friendly additives due to their low ecological impact and decreasing costs. These compounds can enhance char formation in polymeric materials by swelling upon heating, attributed to their functional groups.

View Article and Find Full Text PDF

This study explores the use of propylene oxide-modified ethylenediamine (PPO-EDA) as a novel crosslinker and chain extender in polyurethane (PU) adhesives. PPO-EDA was synthesized and compared with ,-dimethylethylenediamine (DMEDA) to assess its impact on mechanical properties and adhesion performance. Key parameters such as NCO conversion, tensile strength, and lap shear strength were thoroughly evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!