RNA modifications can influence gene expression via multiple aspects such as RNA stability and alternative splicing. The most prominent RNA modification is m6A (N6-methyladenosine). Its profiling from low starting amounts of <100 cells is challenging. We describe here a complete workflow from cell isolation to data analysis that is based on using an RNA CUT&RUN-supported m6A-RIP (RNA immunoprecipitation) procedure and a subsequent adaptor-tagging library synthesis. Male meiocytes isolated from maize anthers were used as a test system to establish the protocol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-2253-7_21 | DOI Listing |
Life Med
February 2023
State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.
To date, over 170 different kinds of chemical modifications on RNAs have been identified, some of which are involved in multiple aspects of RNA fate, ranging from RNA processing, nuclear export, translation, and RNA decay. mA, also known as -methyladenosine, is a prominent internal RNA modification that is catalyzed primarily by the METTL3-METTL14-WTAP methyltransferase complex in higher eukaryotic mRNA and long noncoding RNA (lncRNA). In recent years, abnormal mA modification has been linked to the occurrence, development, progression, and prognosis of the majority of cancers.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China.
Interferon regulatory factor 7 (IRF7)-mediated type I interferon antiviral response is crucial for regulating the host following viral infection in chickens. Infectious bursal disease virus (IBDV) is a double-stranded RNA virus that induces immune suppression and high mortality rates in chickens aged 3-6 weeks. Previous studies have shown that IBDV infection antagonizes the type I interferon production to facilitate viral replication in the cell, and IRF7 signaling might play an important role.
View Article and Find Full Text PDFImmunotargets Ther
January 2025
Institute of Integration of Traditional Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, People's Republic of China.
Introduction: Cancer is a widespread epidemic that affects millions of individuals across the world. Identifying novel cancer targets is crucial to developing more effective cancer treatments. Platelet-derived growth factor-B (PDGFB) plays a critical role in various tumor processes, including angiogenesis and lymphatic metastasis.
View Article and Find Full Text PDFLife Med
August 2023
Key Laboratory of RNA Science and Engineering, Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China.
Ulcerative colitis (UC) is a chronic inflammatory disease of colon, which is characterized by cryptarchitectural distortion. Alternation of colonic stem cell (CoSC) contributed to the occurrence of UC, yet the regulatory mechanisms remain unclear. To investigate the dysregulation of transcriptional and post-transcriptional regulation, we performed RNA-seq, ATAC-seq, and mA meRIP-seq analysis of the cultured CoSCs that were isolated from UC patients.
View Article and Find Full Text PDFFront Immunol
January 2025
Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.
Background: Chimeric antigen receptor T (CAR-T) cell therapy is more effective in relapsed or refractory diffuse large B cell lymphoma (DLBCL) than other therapies, but a high proportion of patients relapse after CAR-T cell therapy owing to antigen escape, limited persistence of CAR-T cells, and immunosuppression in the tumor microenvironment. CAR-T cell exhaustion is a major cause of relapse. Epigenetic modifications can regulate T cell activation, maturation and depletion; they can be applied to reduce T cell depletion, improve infiltration, and promote memory phenotype formation to reduce relapse after CAR-T cell therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!