Objective: To explore whether magnetic susceptibility value (MSV) and radiomics features of the nigrostriatal system could be used as imaging markers for diagnosing Parkinson's disease (PD) and its related cognitive impairment (CI).
Methods: A total of 104 PD patients and 45 age-sex-matched healthy controls (HCs) underwent quantitative susceptibility mapping (QSM). The former completed Hoehn-Yahr Stage and Montreal Cognitive Assessment (MoCA). The patients were divided into several subgroups according to disease stages, courses, and MoCA scores. The ROI was subdivided into the substantia nigra (SN), head of caudate nucleus (HCN), and putamen. The MSVs and radiomics features were obtained from QSM. The multivariable logistic regression (MLR) and support vector machine (SVM) models were constructed to diagnose PD. The correlations between MSVs, radiomics features, and MoCA scores were evaluated.
Results: The MSVs in bilateral SN pars compacta (SNc) of PD patients were higher than those of the HCs (p < 0.001). There were differences in some radiomics features between the two groups (p < 0.05). The MSVs of the right SNc and the radiomics features of the right SN had the highest area under the curve (AUC), respectively. The comprehensive MLR model (0.90) and SVM model (0.95) revealed better classification performance than MSVs (p < 0.05) in diagnosing PD. The MSVs from the HCN were negatively correlated with MoCA scores in PD subgroups. There were correlations between radiomics features and MoCA scores in PD patients.
Conclusions: Radiomics features and MSVs of the nigrostriatal system from QSM could have crucial role in diagnosing PD and assessing CI.
Key Points: • The MLR and the SVM models have excellent diagnostic performance in the diagnosis of PD. • A PD diagnostic nomogram, created based on MSV and the radiomics scores of SVM model, is very convenient for clinical use. • The radiomics features of the nigrostriatal system based on QSM help to evaluate the cognitive impairment in PD patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00330-022-08790-8 | DOI Listing |
Front Neurol
December 2024
Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Objective: To establish and validate a model based on hyperdense middle cerebral artery sign (HMCAS) radiomics features for predicting hemorrhagic transformation (HT) in patients with acute ischemic stroke (AIS) after endovascular treatment (EVT).
Methods: Patients with AIS who presented with HMCAS on non-contrast computed tomography (NCCT) at admission and underwent EVT at three comprehensive hospitals between June 2020 and January 2024 were recruited for this retrospective study. A radiomics model was constructed using the HMCAS radiomics features most strongly associated with HT.
Med Phys
January 2025
Department of Scientific Research and Academic, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, P. R. China.
Background: This study aims to explore the value of habitat-based magnetic resonance imaging (MRI) radiomics for predicting the origin of brain metastasis (BM).
Purpose: To investigate whether habitat-based radiomics can identify the metastatic tumor type of BM and whether an imaging-based model that integrates the volume of peritumoral edema (VPE) can enhance predictive performance.
Methods: A primary cohort was developed with 384 patients from two centers, which comprises 734 BM lesions.
J Imaging Inform Med
January 2025
Laboratory of Computing, Medical Informatics and Biomedical Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
A scoping review was conducted to investigate the role of radiological imaging, particularly high-resolution computed tomography (HRCT), and artificial intelligence (AI) in diagnosing and prognosticating idiopathic pulmonary fibrosis (IPF). Relevant studies from the PubMed database were selected based on predefined inclusion and exclusion criteria. Two reviewers assessed study quality and analyzed data, estimating heterogeneity and publication bias.
View Article and Find Full Text PDFJ Comput Assist Tomogr
November 2024
From the Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu Province, China.
Objectives: The aim of the study is to investigate the ability of preoperative CT (Computed Tomography)-based radiomics signature to predict microvascular invasion (MVI) of intrahepatic mass-forming cholangiocarcinoma (IMCC) and develop radiomics-based prediction models.
Materials And Methods: Preoperative clinical data, basic CT features, and radiomics features of 121 IMCC patients (44 with MVI and 77 without MVI) were retrospectively reviewed. The loading and display of CT images, delineation of the volume of interest, and feature extraction were performed using 3D Slicer.
Front Oncol
December 2024
Department of Radiology, Affiliated Hospital of Qingdao University, Qingdao, China.
Background: The expression level of Ki-67 in nasopharyngeal carcinoma (NPC) affects the prognosis and treatment options of patients. Our study developed and validated an MRI-based radiomics nomogram for preoperative evaluation of Ki-67 expression levels in nasopharyngeal carcinoma (NPC).
Methods: In all, 133 patients with pathologically-confirmed (post-operatively) NPC who underwent MRI examination in one of two medical centers.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!