A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Foldable nano-LiMnO integrated composite polymer solid electrolyte for all-solid-state Li metal batteries with stable interface. | LitMetric

Foldable nano-LiMnO integrated composite polymer solid electrolyte for all-solid-state Li metal batteries with stable interface.

J Colloid Interface Sci

Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki 036-8560, Japan; Energy Conversion Engineering Laboratory, Institute of Regional Innovation (IRI), Hirosaki University, 3-Bunkyocho, Hirosaki 036-8561, Japan. Electronic address:

Published: September 2022

All-solid-state lithium-ion batteries (ASSLBs) are considered as the most promising next-generation energy storage devices. In this work, a low-cost foldable nano-LiMnO integrated Poly (ethylene oxide) (PEO) based composite polymer solid electrolyte (CPSE) is prepared by simply solid-phase method. Density functional theory calculations indicate that the LMO could provide faster ion transfer channels for the migration of lithium ions between PEO chains and segments. As such, the CPSE obtained has a high ionic conductivity of 5.1 × 10 S cm at 60 °C with a high lithium ions transference number of 0.5. The CPSE remains stable even at high temperature with no heat escaping. This could improve the safety performance of the batteries. As a result, the lithium metal battery assembled with CPSE works stably after over 200 cycles at a high rate of 0.5C, and its specific capacity is as high as 125 mAh g. Also, it is confirmed that this CPSE adapts to three cathode materials. The Li metal pouch battery assembled with the CPSE is foldable and has excellent mechanical properties. All these results indicate that the CPSE obtained has excellent electrochemical and outstanding safety performances, which can make it have broad commercial applications in ASSLBs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2022.04.067DOI Listing

Publication Analysis

Top Keywords

foldable nano-limno
8
nano-limno integrated
8
composite polymer
8
polymer solid
8
solid electrolyte
8
lithium ions
8
battery assembled
8
assembled cpse
8
cpse
7
high
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!