Global plastic use has increased rapidly, and environmental pollution associated with nanoplastics (NPs) has been a growing concern recently. However, the impact and biological mechanism of NPs on the cardiovascular system are not well characterized. This study aimed to assess the possibility that NPs exposure promotes premature endothelial cell (EC) senescence in porcine coronary artery ECs and, if so, to elucidate the underlying mechanism. Treatment of ECs with NPs promoted the acquisition of senescence markers, senescence-associated β-galactosidase activity, and p53, p21, and p16 protein expression, resulting in the inhibition of proliferation. In addition, NPs impaired endothelium-dependent vasorelaxation associated with decreased endothelial nitric oxide synthase (eNOS) expression. NPs enhanced reactive oxygen species formation in ECs, and increased oxidative stress levels were associated with the induction of NADPH oxidases expression, followed by the subsequent downregulation of Sirt1 expression. The characteristics of EC senescence and dysfunction caused by NPs are prevented by an antioxidant (N-acetylcysteine), an NADPH oxidase inhibitor (apocynin), and a Sirt1 activator (resveratrol). These findings indicate that NPs induced premature EC senescence, at least in part, through the redox-sensitive eNOS/Sirt1 signaling pathway. This study suggested the effects and underlying mechanism of NPs on the cardiovascular system, which may provide pharmacological targets to prevent NPs-associated cardiovascular diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2022.107248DOI Listing

Publication Analysis

Top Keywords

underlying mechanism
12
nps
9
mechanism nps
8
nps cardiovascular
8
cardiovascular system
8
senescence
5
effects polystyrene
4
polystyrene nanoplastics
4
nanoplastics endothelium
4
endothelium senescence
4

Similar Publications

Screening and identification of evaluation indicators of low phosphorus tolerant germplasm in Gleditsia sinensis Lam.

Sci Rep

December 2024

Institute for Forest Resources and Environment of Guizhou, College of Forestry, Guizhou University, Guiyang, 550025, Guizhou, China.

This study aims to explore the low phosphorus (P) tolerance of saplings from different Gleditsia sinensis Lam. families. It also seeks to screen for Gleditsia sinensis families with strong low P tolerance and identify key indicators for evaluating their tolerance.

View Article and Find Full Text PDF

Network hypersynchrony is emerging as an important system-level mechanism underlying seizures, as well as cognitive and behavioural impairments, in children with structural brain abnormalities. We investigated patterns of single neuron action potential behaviour in 206 neurons recorded from tubers, transmantle tails of tubers and normal looking cortex in 3 children with tuberous sclerosis. The patterns of neuronal firing on a neuron-by-neuron (autocorrelation) basis did not reveal any differences as a function of anatomy.

View Article and Find Full Text PDF

Diabetes nephropathy (DN) is a prevalent and severe microvascular diabetic complication. Despite the recent developments in germacrone-based therapies for DN, the underlying mechanisms of germacrone in DN remain poorly understood. This study used comprehensive bioinformatics analysis to identify critical microRNAs (miRNAs) and the potential underlying pathways related to germacrone activities.

View Article and Find Full Text PDF

Micropapillary adenocarcinoma (MPC) is an aggressive histological subtype of lung adenocarcinoma (LUAD). MPC is composed of small clusters of cancer cells exhibiting inverted polarity. However, the mechanism underlying its formation is poorly understood.

View Article and Find Full Text PDF

Astrocyte to neuron reprogramming has been performed using viral delivery of neurogenic transcription factors in GFAP expressing cells. Recent reports of off-target expression in cortical neurons following adeno-associated virus (AAV) transduction to deliver the neurogenic factors have confounded our understanding of the efficacy of direct cellular reprogramming. To shed light on potential mechanisms that may underlie the neuronal off-target expression of GFAP promoter driven expression of neurogenic factors in neurons, two regionally distinct cortices were compared-the motor cortex (MC) and medial prefrontal cortex (mPFC)-and investigated: (1) the regional tropism and astrocyte transduction with an AAV5-GFAP vector, (2) the expression of Gfap in MC and mPFC neurons; and (3) material transfer between astrocytes and neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!