The knowledge of what separates us genetically from our less-evolved relatives is crucial for gaining new biomedical insight about the human-chimpanzee relatedness that could influence the development of new treatments and diagnostic aids for various ailments. Especially, more than 300 diseases have been mapped to the X chromosome, which has unique and complicated characteristics than other chromosomes in the human genome. Although the genomes of humans and chimpanzees share 99% similarity, significant differences exist between the two species in their non-coding intronic regions. Therefore, this evolutionary-based genome annotation study attempted to computationally compare, contrast, and annotate the homologous miRNAs and their gene regulatory mechanisms in the intronic regions of the PHEX gene on the human X chromosome of the two species. From our results, we identified a total of 1296 human miRNAs and 46, 957 gene targets. Similarly, 30, 563 targets of homologous chimp miRNAs were predicted. miRNAs like hsa-miR-17-5p showed a maximum number of interactions while miRNAs like hsa-miR-107 with the least number of interactions in the human/chimp gene networks. A few top-ranked miRNAs such as hsa-miR-24, hsa-miR-145, hsa-miR-34a, and hsa-miR-378 were observed to be common between the two genera. The cooperativity and multiplicity of certain miRNAs were predicted to regulate the expression of diverse cancer-associated genes such as Cyclin D1, Notch1, CDK-6, E2F3, ALK4, CKDN2A, DHFR, and MAPK14. Nevertheless, further in vitro and in vivo experimental validations of these gene candidates are required before they could be used as potential diagnostic markers and drug targets.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiolchem.2022.107673DOI Listing

Publication Analysis

Top Keywords

mirnas
8
mirnas gene
8
gene targets
8
intronic regions
8
mirnas predicted
8
number interactions
8
gene
6
computational approach
4
approach screen
4
screen predict
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!