Giant clams harbor coccoid Symbiodiniaceae dinoflagellates that are phototrophic. These dinoflagellates generally include multiple phylotypes (species) of Symbiodinium, Cladocopium, and Durusdinium in disparate proportions depending on the environmental conditions. The coccoid symbionts can share photosynthate with the clam host, which in return supply them with nutrients containing inorganic carbon, nitrogen and phosphorus. Symbionts can recycle nitrogen by absorbing and assimilating the endogenous ammonia produced by the host. This study aimed to use the transcript levels of ammonia transporter 2 (AMT2) in Symbiodinium (Symb-AMT2), Cladocopium (Clad-AMT2) and Durusdinium (Duru-AMT2) as molecular indicators to estimate the potential of ammonia transport in these three genera of Symbiodiniaceae dinoflagellates in different organs of the fluted giant clam, Tridacna squamosa, obtained from Vietnam. We also determined the transcript levels of form II ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcII) and nitrate transporter 2 (NRT2) in Symbiodinium (Symb-rbcII; Symb-NRT2), Cladocopium (Clad-rbcII; Clad-NRT2) and Durusdinium (Duru-rbcII; Duru-NRT2), in order to examine the potential of ammonia transport with reference to the potentials of phototrophy or NO uptake independent of the quantities and proportion of these Symbiodiniaceae phylotypes. Our results indicated for the first time that phylotypes of Symbiodinium and Cladocopium could have different potentials of ammonia transport, and that phylotypes of Symbiodinium might have higher potential of NO transport than ammonia transport. They also suggested that Symbiodiniaceae phylotypes residing in different organs of T. squamosa could have disparate potentials of ammonia transport, alluding to the functional diversity among phylotypes of coccoid Symbiodinium, Cladocopium, and Durusdinium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbpa.2022.111225 | DOI Listing |
Clin Chem Lab Med
January 2025
Department of Blood Sciences, Newcastle upon Tyne Hospitals NHS Foundation Trust, Queen Victoria Road, Newcastle Upon Tyne, NE1 4LP, UK.
Objectives: Prompt recognition of hyperammonaemia can avoid severe consequences of delayed treatment. Strict sample transport requirements present barriers to requesting and, if not achieved, rejection by the laboratory. Evidence is sparse on ammonia stability from studies using modern techniques or based in clinical settings.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The University of British Columbia, Vancouver, BC, Canada.
Background: An imbalance between the production and clearance of amyloid beta (Aß) has emerged as a major cause of sporadic Alzheimer's disease (AD). Retinal wholemount studies can identify cell-specific involvement in Aß clearance mechanisms which cannot be accomplished in the brain ex vivo.
Methods: Eye cross-sections of double transgenic (Tg, APP-PS1) and non-carrier sibling female mice (n = 16, 4 per group) at 3- and 9- month ages were probed with antibodies 6E10 (Aβ1-16 amino-acid residues, soluble and insoluble species), ionized calcium-binding adapter molecule 1 (IBA1, microglia/macrophage), glial fibrillary acidic protein (GFAP, astrocytes), glutamine synthetase (GS, Müller cells) and aquaporin-4 (AQP4, membrane water channel) using immunofluorescence.
Bioresour Technol
December 2024
School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China. Electronic address:
Environ Res
December 2024
School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China. Electronic address:
Microbial loss significantly affects wastewater treatment efficiency. This study simulated the inoculation area of a self-developed biological doubling reactor (BDR) to evaluate the retention efficiency of seven different fillers for aerobic denitrifying bacteria. Over 90 days of continuous operation, the porous filler R3 demonstrated excellent performance, with OD values consistently exceeding 1.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
National Engineering Laboratory of Urban Sewage Advanced Treatment and Resource Utilization Technology, Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China.
To achieve non-carbon dioxide greenhouse gas emission reduction and control in municipal wastewater treatment plants (WWTPs), this study conducted one-year long-term monitoring of nitrous oxide (NO) in the anaerobic-anoxic-aerobic (AO) process of a large-scale municipal wastewater treatment plant in Beijing. The experimental results showed that the anaerobic and anoxic zones of the AO process could effectively remove dissolved NO contained in the return sludge, while the aerobic zone was the main area for NO generation and emission, and its generation pathway may have been dominated by ammonia oxidizing bacteria (AOB) denitrification. A significant difference was observed between winter and summer NO production, and the difference in the average NO release flux was up to 7.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!