Powerful and robust inference of complex phenotypes' causal genes with dependent expression quantitative loci by a median-based Mendelian randomization.

Am J Hum Genet

Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Center for Precision Medicine, Sun Yat-sen University, Guangzhou 510080, China. Electronic address:

Published: May 2022

AI Article Synopsis

  • This study addresses the challenge of identifying causal genes from genetic association signals in GWAS for complex traits by introducing a new statistical method called EMIC.
  • EMIC improves upon existing Mendelian randomization methods by reducing false positives related to variable correlation and noise in data.
  • The method has proven effective in rediscovering known causal genes and identifying new potential candidates, and it is accessible through a software platform called KGGSEE.

Article Abstract

Isolating the causal genes from numerous genetic association signals in genome-wide association studies (GWASs) of complex phenotypes remains an open and challenging question. In the present study, we proposed a statistical approach, the effective-median-based Mendelian randomization (MR) framework, for inferring the causal genes of complex phenotypes with the GWAS summary statistics (named EMIC). The effective-median method solved the high false-positive issue in the existing MR methods due to either correlation among instrumental variables or noises in approximated linkage disequilibrium (LD). EMIC can further perform a pleiotropy fine-mapping analysis to remove possible false-positive estimates. With the usage of multiple cis-expression quantitative trait loci (eQTLs), EMIC was also more powerful than the alternative methods for the causal gene inference in the simulated datasets. Furthermore, EMIC rediscovered many known causal genes of complex phenotypes (schizophrenia, bipolar disorder, and total cholesterol) and reported many new and promising candidate causal genes. In sum, this study provided an efficient solution to discriminate the candidate causal genes from vast amounts of GWAS signals with eQTLs. EMIC has been implemented in our integrative software platform KGGSEE.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9118119PMC
http://dx.doi.org/10.1016/j.ajhg.2022.04.004DOI Listing

Publication Analysis

Top Keywords

causal genes
24
complex phenotypes
12
mendelian randomization
8
genes complex
8
eqtls emic
8
candidate causal
8
causal
7
genes
6
emic
5
powerful robust
4

Similar Publications

Article Synopsis
  • Primary ciliary dyskinesia (PCD) is a rare genetic disorder linked to chronic respiratory issues, infertility, and problems with body asymmetry, primarily caused by mutations in the CCDC39 and CCDC40 genes.
  • Researchers used advanced techniques to investigate how these genetic variants impact cellular functions beyond just causing cilia to stop moving.
  • They discovered that the absence of CCDC39/CCDC40 creates a significant loss of over 90 ciliary structural proteins, leading to cilia dysfunction and other cellular issues, suggesting that gene therapy could potentially offer a new treatment strategy for PCD.
View Article and Find Full Text PDF

Comparative analysis of antibiotic resistance genes between fresh pig manure and composted pig manure in winter, China.

PLoS One

January 2025

School of Environmental Engineering, Yellow River Conservancy Technical Institute, Kaifeng Key Laboratory of Food Composition and Quality Assessment, Kaifeng, China.

Antibiotic resistance is a critical global public health issue. The gut microbiome acts as a reservoir for numerous antibiotic resistance genes (ARGs), which influence both existing and future microbial populations within a community or ecosystem. However, the differences in ARG expression between fresh and composted feces remain poorly understood.

View Article and Find Full Text PDF

Exophiala spinifera strain FM, a black yeast and melanized ascomycete, shows potential for oil biodesulfurization by utilizing dibenzothiophene (DBT) as its sole sulfur source. However, the specific pathway and enzymes involved in this process remain unclear due to limited genome sequencing and metabolic understanding of E. spinifera.

View Article and Find Full Text PDF

RNA interference (RNAi) mediates antiviral defense in many eukaryotes. Caenorhabditis elegans mutants that disable RNAi are more sensitive to viral infection. Many mutants that enhance RNAi have also been identified; these mutations may reveal genes that are normally down-regulated in antiviral defense.

View Article and Find Full Text PDF

The genetic architecture of resistance to flubendiamide insecticide in Helicoverpa armigera (Hübner).

PLoS One

January 2025

Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, Brazil.

Insecticide resistance is a major problem in food production, environmental sustainability, and human health. The cotton bollworm Helicoverpa armigera is a globally distributed crop pest affecting over 300 crop species. H.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!