Background: Bone marrow-derived mesenchymal stem cells (BMSCs) and bone morphogenetic protein-2 (BMP-2) have been studied for bone repair because they have regenerative potential to differentiate into osteoblasts. The development of injectable and in situ three-dimensional (3D) scaffolds to proliferate and differentiate BMSCs and deliver BMP-2 is a crucial technology in BMSC-based tissue engineering.
Methods: The proliferation of mouse BMSCs (mBMSCs) in collagen/poly-γ-glutamic acid (Col/γ-PGA) hydrogel was evaluated using LIVE/DEAD and acridine orange and propidium iodide assays. In vitro osteogenic differentiation and the gene expression level of Col/γ-PGA(mBMSC/BMP-2) were assessed by alizarin red S staining and quantitative reverse-transcription polymerase chain reaction. The bone regeneration effect of Col/γ-PGA(mBMSC/BMP-2) was evaluated in a mouse calvarial bone defect model. The cranial bones of the mice were monitored by micro-computed tomography and histological analysis.
Results: The developed Col/γ-PGA hydrogel showed low viscosity below ambient temperature, while it provided a high elastic modulus and viscous modulus at body temperature. After gelation, the Col/γ-PGA hydrogel showed a 3D and interconnected porous structure, which helped the effective proliferation of BMSCs with BMP-2. The Col/γ-PGA (mBMSC/BMP-2) expressed more osteogenic genes and showed effective orthotopic bone formation in a mouse model with a critical-sized bone defect in only 3-4 weeks.
Conclusion: The Col/γ-PGA(mBMSC/BMP-2) hydrogel was suggested to be a promising platform by combining collagen as a major component of the extracellular matrix and γ-PGA as a viscosity reducer for easy handling at room temperature in BMSC-based bone tissue engineering scaffolds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477999 | PMC |
http://dx.doi.org/10.1007/s13770-022-00454-4 | DOI Listing |
Arthrosc Tech
November 2024
Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Patellar dislocation is a common knee injury, with concomitant pathoanatomical risk factors that synergistically interact and predispose to patellofemoral instability. Medial patellofemoral ligament (MPFL) reconstruction has demonstrated significant potential in the re-establishment of MPFL anatomic and biological function, with low patellar redislocation rates. Although many techniques for MPFL reconstruction have been developed, challenges such as patella fractures and high costs persist.
View Article and Find Full Text PDFBiomater Biosyst
September 2024
Department of Septic Bone and Joint Surgery, BG Hospital Hamburg, Bergedorfer Straße 10, Hamburg, 21033, Germany.
Methodology: In a consecutive retrospective analysis of 190 patients treated with the Masquelet technique at the BG Klinikum Hamburg from January 2012 to January 2022, subgroup analysis for defect-specific features such as the extent and morphology of the defect were recorded, and their influence on the time to reach full weight-bearing of the affected limb was investigated.
Results And Conclusion: A total of 217 defects were treated in 190 patients using the Masquelet technique. 70 % of all defects were in the tibia, followed by 22 % in the femur and only about 7 % in the upper extremity.
Cancer Med
December 2024
Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.
Background: Langerhans cell histiocytosis (LCH) is the most prevalent histiocytic disorder in pediatric populations, with a highly heterogeneous clinical presentation. Currently, the correlation between clinical phenotypes and molecular alterations in childhood LCH, besides the BRAF mutation, has not been sufficiently studied.
Methods: This study presented data on 33 pediatric LCH patients treated at our center who exhibited various molecular alterations other than the BRAF mutation.
Orthop Surg
December 2024
Department of Orthopedics, The 960th Hospital of the People's Liberation Army, Jinan, China.
Objective: Aseptic loosening (AL) is a common mechanical complication following reconstruction of the distal femoral cemented prosthesis (DFCP), often resulting in severe bone loss, which complicates prosthesis revision. 3D-printed personalized implants represent an emerging solution for the reconstruction of complex bone defects. This study aimed to investigate the early therapeutic effects of using a 3D-printed, customized, uncemented stem prosthesis for revising aseptic AL in DFCP.
View Article and Find Full Text PDFZhonghua Yu Fang Yi Xue Za Zhi
December 2024
Department of Laboratory Medicine, West China Second University Hospital, Sichuan University Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu610041, China.
Bones possess metabolic activity, with their homeostasis maintained by bone resorption and bone formation mediated by osteoclasts and osteoblasts. By measuring bone metabolism markers, the overall state of bone metabolism and dynamic changes in systemic bone tissue can be reflected. Traditional bone turnover markers, including alkaline phosphatase, bonespecific alkaline phosphatase, procollagen type 1 N-terminal propeptide, procollagen type 1 C-terminal propeptide, osteocalcin, c-terminal telopeptides of type 1 collagen(CTX) and its subtype β-CTX, n-terminal telopeptides of type 1 collagen, have been widely used in clinical practice but still have limitations in terms of stability, diagnostic reliability, and specific reflection of bone sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!