Needle reuse is a common practice and primary cause of customer compliance issues such as pain, bruising, clogging, injection site reactions (ISR), and associated lipodystrophy. This study aimed to characterize skin microflora at injection sites and establish microbial contamination of used pen injectors and needles. The second objective was to evaluate the risk of infections during typical and repeated subcutaneous injections. 50 participants with diabetes and 50 controls (n = 100) were sampled through tape strips and skin swabs on the abdomen and thigh for skin microflora. Used pen injectors and needles were collected after in-home use and from the hospital after drug administration by health care professionals (HCPs). Samples were analyzed by conventional culture, matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF), mass spectrometry (MS), confocal laser scanning microscopy (CLSM), and 16S/ITS high throughput sequencing (HTS). A mathematical model simulated the risk of needle contamination during injections. Injection site populations were in 10  cells/cm  order, with increased viable bacteria and anaerobic bacteria on the skin in persons with diabetes (p = 0.05). Interpersonal variation dominated other factors such as sex or location. A higher prevalence of Staphylococcus aureus on abdominal skin was found in persons with diabetes than control skin (p ≤ 0.05). Most needles and cartridges (95% and 86%) contained no biological signal. The location of the device collection (hospital vs home-use) and use regimen did not affect contamination. CLSM revealed scarcely populated skin microflora scattered in aggregates, diplo, or single cells. Our mathematical model demonstrated that penetrating bacteria colonies during subcutaneous injection is unlikely. These findings clarify the lack of documented skin infections from subcutaneous insulin injections in research. Furthermore, these results can motivate the innovation and development of durable, reusable injection systems with pharmacoeconomic value and a simplified and enhanced user experience for patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9320873PMC
http://dx.doi.org/10.1111/apm.13230DOI Listing

Publication Analysis

Top Keywords

injection site
12
persons diabetes
12
needle reuse
8
skin microflora
8
pen injectors
8
injectors needles
8
mathematical model
8
skin persons
8
skin
7
injection
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!