One key strategy to further improve the power conversion efficiency (PCE) of organic solar cells (OSCs) is to incorporate various complementary functional groups in a molecule. Such strategies proved attractive for tuning the photovoltaic performances of the materials and can show a much higher absorption phenomenon with narrower band gaps. Despite the outstanding benefits, materials selection and their efficient modeling is also an extremely challenging job for the development of OSCs materials. In this manuscript, we proficiently developed an efficient series of small molecule-based non-fullerene acceptors (SM-NFAs) SN1-SN9 for OSCs and characterized by density functional theory (DFT) and time-dependent DFT (TD-DFT). The characteristics required to estimate electron and hole mobility, and open-circuit voltage (V) were investigated by optimizing the geometrical parameters, absorption spectra, exciton binding energy, frontier molecular orbitals (FMOs), electronic structures, and charge transfer rates. The outcomes of these materials showed that all newly constructed small-molecule-based non-fullerene acceptors exhibit broader and better absorption efficiency (λ = 761 to 778 nm) and exciton dissociation, while much lower LUMO energy levels which may help to enhance the reorganizational energies. Further, a narrow bandgap also offers better photovoltaic properties. Hence, the designed molecules exhibited narrow bandgap values (E = 2.82 to 2.98 eV) which are lower than that of the reference molecule (3.05 eV). High V and photocurrent density values with lower excitation and binding energies eventually increase the PCEs of the OSC devices. The obtained results have shown that designed molecules could be effective aspirants for high-performance OSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-022-05116-9 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
January 2025
Department of Chemistry, Government College University Faisalabad, Faisalabad 38000 Pakistan; Dry Lab (Janjua.XYZ), Physical Chemistry and Computational Modelling (PCCM), Department of Chemistry, Government College University Faisalabad, Faisalabad 38000 Pakistan. Electronic address:
Organic photovoltaics (OPVs) have improved greatly in recent years in pursuit for efficient and sustainable energy conversion methods. Specifically, utilizing quantum chemistry approaches such as density functional theory (DFT), the electronic structures, energy levels, and charge transport characteristics of donor-π-acceptor (D-π-A) systems based on non-fullerene donor and acceptor molecules have been examined and synthesized. Non-fullerene acceptors offer several advantages over traditional fullerene-based materials, such as enhanced light absorption, modifiable energy levels, and reduced recombination losses.
View Article and Find Full Text PDFMater Horiz
January 2025
Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Straße 24/25, 14476, Germany.
Two-dimensional transition metal dichalcogenides (2D TMDCs) can be combined with organic semiconductors to form hybrid van der Waals heterostructures. Specially, non-fullerene acceptors (NFAs) stand out due to their excellent absorption and exciton diffusion properties. Here, we couple monolayer tungsten diselenide (ML-WSe) with two well performing NFAs, ITIC, and IT-4F (fluorinated ITIC) to achieve hybrid architectures.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China.
Thanks to the development of non-fullerene acceptor (NFA) materials, the photovoltaic conversion efficiency (PCE) of organic solar cells (OSCs) has exceeded 20 %, which has met the requirements for commercialisation. In the current stage, the main focus is to balance the performance and stability. It has been shown that all-polymer formulation can improve device stability, however, PCE is not in satifsfaction, and the batch-to-batch variation leads to quality control issues.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun, 130022, China.
Spectrochim Acta A Mol Biomol Spectrosc
December 2024
School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun 130022, China; State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China. Electronic address:
The power conversion efficiency (PCE) of ternary all-small-molecule organic solar cells (T-ASM-OSCs) differs significantly from that of the polymer systems (2 %), and the role of third component remains unclear. The electron donor of coumarin derivatives with simple structure and strong and broad light absorption has high PCE for T-ASM-OSCs composed of non-fullerene acceptors (Y6 and DBTBT-IC). Here, we calculated the electronic structure and interfacial properties of the binary C1-CN:Y6 and ternary C1-CN:Y6:DBTBT-IC systems using molecular dynamic (MD) simulations and density functional theory (DFT) to explore the role of the third component (DBTBT-IC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!