Molecular theory of the static dielectric constant of dipolar fluids.

J Chem Phys

Department of Chemical Engineering, Centre for Process Systems Engineering and Institute for Molecular Science and Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.

Published: April 2022

The link between the static dielectric constant and the microscopic intermolecular interactions is the Kirkwood g factor, which depends on the orientational structure of the fluid. Over the years, there have been several attempts to provide an accurate description of the orientational structure of dipolar fluids using molecular theories. However, these approaches were either limited to mean-field approximations for the pair correlation function or, more recently, limited to adjusting the orientational dependence to simulation data. Here, we derive a theory for the dielectric constant of dipolar hard-sphere fluids using the augmented modified mean-field approximation. Qualitative agreement is achieved throughout all relevant thermodynamic states, as demonstrated by a comparison with simulation data from the literature. Excellent quantitative agreement can be obtained using a single empirical scaling factor, the physical origin of which is analyzed and accounted for. In order to predict the dielectric constant of the Stockmayer fluid (Lennard-Jones plus dipole potential), we use an adjusted version of the expression for the dipolar hard-sphere fluid. Comparing theoretical predictions with newly generated simulation data, we show that it is possible to obtain excellent agreement with simulation by performing the calculations at a corresponding state using the same scaling factor. Finally, we compare the theoretical orientational structure of the Stockmayer fluid with that obtained from simulations. The simulated structure is calculated following a post-processing methodology that we introduce by deriving an original expression that relates the proposed theory to the histogram of relative dipole angles.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0079511DOI Listing

Publication Analysis

Top Keywords

dielectric constant
16
orientational structure
12
simulation data
12
static dielectric
8
constant dipolar
8
dipolar fluids
8
dipolar hard-sphere
8
scaling factor
8
stockmayer fluid
8
molecular theory
4

Similar Publications

Soil bacterial communities are crucial to various ecosystem services, with significant implications for environmental processes and human health. Delivering functional bacterial strains to target locations enhances the preferred ecological features. However, the delivery process is often constrained by limited bacterial transport through low-permeability soil.

View Article and Find Full Text PDF

TiCT MXene Thin Films and Intercalated Species Characterized by IR-to-UV Broadband Ellipsometry.

J Phys Chem C Nanomater Interfaces

January 2025

Nanoscale Solid-Liquid Interfaces, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Schwarzschildstraße 8, 12489 Berlin, Germany.

MXenes are two-dimensional (2D) materials with versatile applications in optoelectronics, batteries, and catalysis. To unlock their full potential, it is crucial to characterize MXene interfaces and intercalated species in more detail than is currently possible with conventional optical spectroscopies. Here, we combine ultra-broadband ellipsometry and transmission spectroscopy from the mid-infrared (IR) to the deep-ultraviolet (UV) to probe quantitatively the composition, structure, transport, and optical properties of spray-coated TiCT MXene thin films with varying material properties.

View Article and Find Full Text PDF

Silicon (Si) is considered a promising anode material for next-generation lithium-ion batteries due to its high theoretical specific capacity and earth-abundancy. However, challenges such as significant volume expansion, unstable solid electrolyte interphase (SEI) formation in incompatible electrolytes, and slow lithium-ion transport lead to its poor cycling and rate performance. In this work, it is demonstrated that superior cyclability and rate capability of Si anodes can be achieved using ethyl fluoroacetate (EFA) and fluoroethylene carbonate (FEC) solvents with low binding energy with Li but with sufficiently high relative dielectric constants.

View Article and Find Full Text PDF

Penguin feather-inspired flexible aerogel composite films featuring ultra-low thermal conductivity and dielectric constant.

Mater Horiz

January 2025

State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, People's Republic of China.

Given extremely high porosity, aerogels have demonstrated remarkable advantages in serving as thermal insulation and wave-transparent materials. Unfortunately, their practical applications are greatly confined by their inherent fragility. The recent emergence of polymer aerogels presents an ideal platform for the development of flexible aerogel films.

View Article and Find Full Text PDF

Correlation of Phase Structure, Defect Relaxation, and Microwave Dielectric Properties in Low-Loss MgTiO Ceramic Systems.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.

Low-loss microwave dielectrics are of significant importance for the miniaturization and integration of microwave devices. In this paper, the ceramics of nominal composition MgTiO ( = 3-6) are synthesized, and the correlations among their phase compositions, defect behaviors, and microwave dielectric properties are systematically investigated. The analyses indicate that the MgTiO ceramics are a biphasic system consisting of hexagonal ilmenite-structured MgTiO and cubic spinel-structured MgTiO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!