This paper proposes a high-speed continuous wavelet transform (CWT) processor to analyze vital signals extracted from a frequency-modulated continuous wave (FMCW) radar sensor. The proposed CWT processor consists of a fast Fourier transform (FFT) module, complex multiplier module, and inverse FFT (IFFT) module. For high-throughput processing, the FFT and IFFT modules are designed with the pipeline FFT architecture of radix-2 single-path delay feedback (R2SDF) and mixed-radix multipath delay commutator (MRMDC) architecture, respectively. In addition, the IFFT module and the complex multiplier module perform a four-channel operation to reduce the processing time from repeated operations. Simultaneously, the MRMDC IFFT module minimizes the circuit area by reducing the number of non-trivial multipliers by using a mixed-radix algorithm. In addition, the proposed CWT processor can support variable lengths of 8, 16, 32, 64, 128, 256, 512, and 1024 to analyze various vital signals. The proposed CWT processor was implemented in a field-programmable gate array (FPGA) device and verified through the measurement of heartbeat and respiration from an FMCW radar sensor. Experimental results showed that the proposed CWT processor can reduce the processing time by 48.4-fold and 40.7-fold compared to MATLAB software with Intel i7 CPU. Moreover, it can be confirmed that the proposed CWT processor can reduce the processing time by 73.3% compared to previous FPGA-based implementations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9032614 | PMC |
http://dx.doi.org/10.3390/s22083073 | DOI Listing |
Sensors (Basel)
April 2024
Waves: Core Research and Engineering (WaveCoRE), Department of Electrical Engineering (ESAT), KU Leuven, B-3001 Leuven, Belgium.
This paper proposes a new approach for wide angle monitoring of vital signs in smart home applications. The person is tracked using an indoor radar. Upon detecting the person to be static, the radar automatically focuses its beam on that location, and subsequently breathing and heart rates are extracted from the reflected signals using continuous wavelet transform (CWT) analysis.
View Article and Find Full Text PDFSensors (Basel)
April 2022
Department of Smart Air Mobility, Korea Aerospace University, Goyang-si 10540, Korea.
This paper proposes a high-speed continuous wavelet transform (CWT) processor to analyze vital signals extracted from a frequency-modulated continuous wave (FMCW) radar sensor. The proposed CWT processor consists of a fast Fourier transform (FFT) module, complex multiplier module, and inverse FFT (IFFT) module. For high-throughput processing, the FFT and IFFT modules are designed with the pipeline FFT architecture of radix-2 single-path delay feedback (R2SDF) and mixed-radix multipath delay commutator (MRMDC) architecture, respectively.
View Article and Find Full Text PDFInt J Neural Syst
March 2017
§ Magna Græcia University, Catanzaro, Italy.
A novel technique of quantitative EEG for differentiating patients with early-stage Creutzfeldt-Jakob disease (CJD) from other forms of rapidly progressive dementia (RPD) is proposed. The discrimination is based on the extraction of suitable features from the time-frequency representation of the EEG signals through continuous wavelet transform (CWT). An average measure of complexity of the EEG signal obtained by permutation entropy (PE) is also included.
View Article and Find Full Text PDFAppl Radiat Isot
December 2013
DIMMER Laboratory, Faculty of Sciences and Technology, University Ziane Achour, BP3117, Djelfa, Algeria; LATSI Laboratory, Blida University, BP270 Route de Soumaa, Blida, Algeria. Electronic address:
In this work, we present a mixed software/hardware implementation of 2-D signals encoder/decoder using dyadic discrete wavelet transform (DWT) based on quadrature mirror filters (QMF); using fast wavelet Mallat's algorithm. This work is designed and compiled on the embedded development kit EDK6.3i, and the synthesis software, ISE6.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2013
DSP/IC Design Lab, Graduate Institute of Electronics Engineering, National Taiwan University, Taiwan.
Most of the abnormal cardiac events such as myocardial ischemia, acute myocardial infarction (AMI) and fatal arrhythmia can be diagnosed through continuous electrocardiogram (ECG) analysis. According to recent clinical research, early detection and alarming of such cardiac events can reduce the time delay to the hospital, and the clinical outcomes of these individuals can be greatly improved. Therefore, it would be helpful if there is a long-term ECG monitoring system with the ability to identify abnormal cardiac events and provide realtime warning for the users.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!